Answer:
You could subtract 910 from 60 which would give you 850 and that would be your answer.
Step-by-step explanation:
Answer:
KON
Step-by-step explanation:
9514 1404 393
Answer:
4) 6x
5) 2x +3
Step-by-step explanation:
We can work both these problems at once by finding an applicable rule.

where O(h²) is the series of terms involving h² and higher powers. When divided by h, each term has h as a multiplier, so the series sums to zero when h approaches zero. Of course, if n < 2, there are no O(h²) terms in the expansion, so that can be ignored.
This can be referred to as the <em>power rule</em>.
Note that for the quadratic f(x) = ax^2 +bx +c, the limit of the sum is the sum of the limits, so this applies to the terms individually:
lim[h→0](f(x+h)-f(x))/h = 2ax +b
__
4. The gradient of 3x^2 is 3(2)x^(2-1) = 6x.
5. The gradient of x^2 +3x +1 is 2x +3.
__
If you need to "show work" for these problems individually, use the appropriate values for 'a' and 'n' in the above derivation of the power rule.
Give more detail please this makes zero sense
Answer:
The answer is 5.
Step-by-step explanation: