1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
2 years ago
12

For which one of the following functions is parenchyma tissue particularly suited?

Biology
1 answer:
serious [3.7K]2 years ago
7 0

Reinforcement and support

parenchyma, in plants, tissue typically composed of living cells that are thin-walled, unspecialized in structure, and therefore adaptable, with differentiation, to various functions. The cells are found in many places throughout plant bodies and, given that they are alive, are actively involved in photosynthesis, secretion, food storage, and other activities of plant life. Parenchyma is one of the three main types of ground, or fundamental, tissue in plants, together with sclerenchyma (dead support tissues with thick walls) and collenchyma (living support tissues with irregular walls).

You might be interested in
N which vertebrates did feathers first evolve?
Lapatulllka [165]
<span>Wings have evolved several times independently. In flying fish, the wings are formed by the enlargement of the pectoral fins. Some fish leap out of the water and glide through the air, both to save energy and to escape predators. If they were already gliding, then any mutation that would result in an increase of the gliding surface would be advantageous to the fish that has it. These advantageous may allow these fish to out-compete the others. 

Wings have also evolved in bats, pterosaurs, and birds. In these animals, the wings are formed by the forelimbs. In some lizards that have evolved gliding flight, however, the "wings" or gliding surfaces may be quite different. The lizard Draco, for example, has gliding surfaces formed by an extension of the ribs. A number of extinct reptiles have similar gliding surfaces. Frogs that glide have expanded webbing on their hands and feet. Gliding ("flying") squirrels and marsupial sugar gliders have flaps of skin that lie between the front and rear limbs. These gliding animals all have one thing in common: a gliding surface that is formed by enlarging some parts of the body. 

In pterosaurs, the wing is formed by an elongated finger and a large skin membrane attached to this finger. In bats, the wing is formed by the entire hand, with skin membranes connecting the elongated fingers. In birds, flight feathers are attached to the entire forelimb, while the fingers have fused together. In all of these animals except birds, the wing is a solid structure. In birds, however, the wing is formed by a large number of individual feathers lying close to each other and each feather is in turn formed by filaments that interlock. 

Biophysicists have determined that flight most likely evolved from the tree down. That means most active flyers evolved flight from an animal that was already gliding. Gliding was therefore probably an indispensable intermediate stage in the evolution of flight. Since gliding has evolved in so many different groups of animals, it follows that the ancestors of birds, bats, and pterosaurs were almost certainly gliders. 

Unfortunately, the fossil records of the immediate gliding ancestors of birds, bats, and pterosaurs are all missing. The first known bat and bird fossils are recognizable as flyers. The same is true of pterosaurs. Therefore the origin of these flyers remain a mystery and a subject of often acrimonious debate. There are people who claim that dinosaurs evolved insulation, which then evolved into feathers, but the evidence for that is lacking. The so-called proto-feathers found on some dinosaurs are indistinguishable from the collagen fibers found in the skin of most vertebrates. Some of the supposedly feathered dinosaurs, such as Caudipteryx and Protarchaeopteryx, are actually flightless birds. The same is probably true of Microraptor fossils, which are (as Alan Feduccia says) probably "avian non-dinosaurs." 

Even though the immediate ancestor of birds remains a mystery, there is a fossil known as Longisquama insignis, which lived during the late Triassic. It has featherlike structures on its back. It was probably a glider of some sort. So, this animal may well be the distant ancestor of Archaeopteryx, the oldest known bird. 

In sum, flying almost certainly evolved from animals that were already gliding, or from the tree down, not from the ground up. The dinosaurian origin of birds requires that dinosaurs evolved feathers from insulation and flight to have evolved from the ground up. Both of these requirements are extremely unlikely to have occurred in evolutionary history, because dinosaurs are almost certainly ectothermic (or "cold-blooded") and therefore they never evolved insulation, and because feathers are too unnecessarily complex to have evolved as insulation. Flight from the ground up is also dangerous because large animals that attempt to fly from the ground may crash and seriously injure or even kill themselves. We all know how dangerous an airplane can be if it loses power and crashes. Small and light weight animals, OTOH, that were already gliding can survive if their attempt to fly fails. Finally, if flight evolved from gliding, then why do animals glide? The answer is that gliding is energetically much cheaper than to descend a tree, walk along the ground, and then climb up another tree. Besides, it is almost certainly much safer to glide from one tree to another than to be walking on the ground for many arboreal animals. 

See link below for details of why dinosaurs are considered ectothermic according to the available scientific evidence.</span>Source(s):<span>http://discovermagazine.com/1996/dec/aco...</span>
3 0
3 years ago
Jacob skips, climbs ladders, and is able to change direction very quickly while running. his gross-motor skills are normative fo
schepotkina [342]
Gross motor skills involve large muscles in the arms legs and torso. The general guidelines for gross motor development for children 4 years of age include running, jumping and climbing well and control their direction. They can hop on one foot and they start to skip at this age. At this stage, they are also able to ride a tricycle and reliably catch a ball. 

The answer to your question is 4.
7 0
3 years ago
Each member of a class sampled a piece of PTC testing paper. Thirty people sampled the chemical.
Andrei [34K]
Assuming that the trait of being able to taste the sample is a dominant trait, then the tasters have at least one of that dominant trait and the people who were not tasters had the homozygous genes for the recessive trait. Therefore, the answer is
10 - 30
3 0
3 years ago
How many chromosomes are in an adult wild mouses sperm cell?
Colt1911 [192]
There is 20 chromosomes in a adult wild mouse
7 0
3 years ago
Read 2 more answers
What do scientists do to aquire new knowledge​
Anettt [7]

Scientists often perform experiments to check and recheck their work.  They also redo these experiments to ensure correct results.

5 0
3 years ago
Other questions:
  • What types of adaptations would be needed by organisms that I've in a river
    5·1 answer
  • A protein is made and inserted into the membrane of the rough endoplasmic reticulum. A binding site that is present in this prot
    8·1 answer
  • Which structures protect the cell? Check all that apply.
    13·2 answers
  • Part A. Classity each as a carbohydrate, protein, lipid, or nucleic acid.
    6·1 answer
  • Answer this one ABC or D
    8·1 answer
  • What do conduction and convection have in common?
    11·1 answer
  • Which of the following best represents the purpose of fertilizers?
    11·1 answer
  • What are three ways mutations can occur<br>I will give brainlest answer​
    7·2 answers
  • Is this correct? Please help asap tysm
    7·1 answer
  • Which two parts does a cow eye have that human eye does not
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!