This is the concept of volumes of solid figures;
volume=length*width*height
the dimensions of our figure is:
length=15 1/2 in=31/2 in
width=10 1/4 in=41/4 in
height= 12 in
thus the volume will be:
volume=(31/2*41/4*12)
volume=1906 1/2 in^3
the answer is 1906 1/2 in^3
Answer:
Step-by-step explanation:
tanx=27/38
take the inverse...
tan^-1(27/38)
≈35.4 degrees
Thus L.H.S = R.H.S that is 2/√3cosx + sinx = sec(Π/6-x) is proved
We have to prove that
2/√3cosx + sinx = sec(Π/6-x)
To prove this we will solve the right-hand side of the equation which is
R.H.S = sec(Π/6-x)
= 1/cos(Π/6-x)
[As secƟ = 1/cosƟ)
= 1/[cos Π/6cosx + sin Π/6sinx]
[As cos (X-Y) = cosXcosY + sinXsinY , which is a trigonometry identity where X = Π/6 and Y = x]
= 1/[√3/2cosx + 1/2sinx]
= 1/(√3cosx + sinx]/2
= 2/√3cosx + sinx
R.H.S = L.H.S
Hence 2/√3cosx + sinx = sec(Π/6-x) is proved
Learn more about trigonometry here : brainly.com/question/7331447
#SPJ9
Answer:
<em><u>Linear function :</u></em>The characteristic property of linear functions is that when the input variable is changed, the change in the output is proportional to the change in the input. Linear functions are related to linear equations.
Step-by-step explanation:
We have
y=mx+c
for 1st
not satisfied.
for
2nd
not satisfied
<em><u>3rd</u></em>
<em><u>3rd satisfied</u></em>
4th
[note : substitute value of x to get value of y from table]
so
<u>t</u><u>h</u><u>i</u><u>r</u><u>d</u><u> </u><u>table represents a linear function.</u>