<span>Simplifying
(6a + -8b)(6a + 8b) = 0
Multiply (6a + -8b) * (6a + 8b)
(6a * (6a + 8b) + -8b * (6a + 8b)) = 0
((6a * 6a + 8b * 6a) + -8b * (6a + 8b)) = 0
Reorder the terms:
((48ab + 36a2) + -8b * (6a + 8b)) = 0
((48ab + 36a2) + -8b * (6a + 8b)) = 0
(48ab + 36a2 + (6a * -8b + 8b * -8b)) = 0
(48ab + 36a2 + (-48ab + -64b2)) = 0
Reorder the terms:
(48ab + -48ab + 36a2 + -64b2) = 0
Combine like terms: 48ab + -48ab = 0
(0 + 36a2 + -64b2) = 0
(36a2 + -64b2) = 0
Solving
36a2 + -64b2 = 0
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '64b2' to each side of the equation.
36a2 + -64b2 + 64b2 = 0 + 64b2
Combine like terms: -64b2 + 64b2 = 0
36a2 + 0 = 0 + 64b2
36a2 = 0 + 64b2
Remove the zero:
36a2 = 64b2
Divide each side by '36'.
a2 = 1.777777778b2
Simplifying
a2 = 1.777777778b2
Take the square root of each side:
a = {-1.333333333b, 1.333333333b}</span>
You would times 3 to w and u which will then be (3w-3u)2 then you take the exponent and do 3 times 3 with both of them then the answer would be 9w-9u
Answer:
Step-by-step explanation:
there is a linear relationship
from the table, x changes by +6, y changes by -3 every time
so that means the slope is constant i.e. its a straight line
slope=(y2-y1)/(x2-x1)=-3/6
= -1/2
take the 1st pt, ( 1, -4 )
(y-(-4)) = slop * (x-1)
y+4 = -1/2*(x-1)
ans is A
Answer:
C is the right answer
Step-by-step explanation:
C is the right answer
Hope that helps
Answer:
-11, 11
Step-by-step explanation:
You have to find when the function crosses the x-axis. You could find this using algebra by solving for x in the equation but I prefer to simply graph it using something like desmos and see when it crosses the x-axis. Doing that I can see the answers would be -11 and 11