Answer:
In terms of pi: 243
in decimal form: 763.407
Step-by-step explanation:
to find surface area of a hemisphere the formula is,

diameter (d) = 18
radius = d / 2 = 18 / 2
radius = 9

Answer:
A
Step-by-step explanation:



This option works
Step-by-step explanation:
this is a linear programming problem, and we are expected to draw up the linear program for the solution of the problem.
The objective function is
Maximize
35A+42B+20C=P
subject to constraints(board and wicker)
The constraints are
board
7A+5B+4C=3000
wicker
4A+5B+3C=1400
A>0, B>0, C>0
Answer:
- an = 3(-2)^(n-1)
- 3, -6, 12, -24, 48
Step-by-step explanation:
These variable names, a1, r, are commonly used in relationship to geometric sequences. We assume you want the terms of a geometric sequence with these characteristics.
a1 is the first term. r is the ratio between terms, so is the factor to find the next term from the previous one.
a1 = 3 (given)
a2 = a1×r = 3×(-2) = -6
a3 = a2×r = (-6)(-2) = 12
a4 = a3×r = (12)(-2) = -24
a5 = a4×r = (-24)(-2) = 48
The first 5 terms are 3, -6, 12, -24, 48.
__
The explicit formula for the terms of a geometric sequence is ...
an = a1×r^(n -1)
Using the given values of a1 and r, the explicit formula for this sequence is ...
an = 3(-2)^(n -1)
Answer:
<em><u>given </u></em><em><u>:</u></em><em><u>-</u></em>
<em><u>for </u></em><em><u>rectangular</u></em><em><u> </u></em><em><u>part:</u></em><em><u> length</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>i</u></em><em><u>n</u></em><em><u>,</u></em><em><u> breadth</u></em><em><u>=</u></em><em><u>8</u></em><em><u>i</u></em><em><u>n</u></em>
<em><u>for</u></em><em><u> </u></em><em><u>triangular</u></em><em><u> </u></em><em><u>part:</u></em><em><u>base=</u></em><em><u>8</u></em><em><u>i</u></em><em><u>n</u></em><em><u>,</u></em><em><u> </u></em><em><u>height=</u></em><em><u>3</u></em><em><u>i</u></em><em><u>n</u></em>
<em><u>area of the given fig:</u></em>
<em><u>area of the given fig:area of 2 triangles +area of rectangle </u></em>
<em><u>
</u></em>
<h2>
<em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u> </u></em><em><u>you</u></em><em><u><</u></em><em><u>3</u></em></h2>
<h3 />