So uh uhm yes uhhhhhhhhhhhhhhhh
1/9 - 5/6
Convert both of them into denominators of 18.
2/18 - 15/18
Subtract the numerators and keep the denominator:
-13/18
Answer:
The product of the other two zeros is c
Step-by-step explanation:
Let α, β and γ be the zeros of the polynomial x³ + ax² + bx + c. Since one of the zeros is -1, therefore let γ = -1. Hence:
sum of the roots = α + β + γ = -a
-1 + β + γ = -a
β + γ = -a + 1
αβ + αγ + βγ = b
-1(β) + (-1)γ + βγ = b
-β -γ + βγ = b
Also, the product of the zeros is equal to -c, hence:
αβγ = -c
-1(βγ) = -c
βγ = c
Hence the product of the other two zeros is c
Actually, when you know 2 sides and an included angle, you use the Law of Cosines. (and we don't know if theta is an included angle).
Solving for side c
c^2 = a^2 + b^2 -2ab * cos(C)
c^2 = 36 + 16 - 2*6*4 * cos(60)
c^2 = 52 -48*.5
c^2 = 28
c = 5.2915
Using the Law of Sines
side c / sin(C) = side b / sin (B)
5.2915 / sin(60) = 4 / sin (B)
sin(B) = sin(60) * 4 / 5.2915
sin(B) = 0.86603 * 4 / 5.2915
<span><span>sin(B) = 3.46412
</span>
/ 5.2915
</span>
<span><span><span>sin(B) = 0.6546571451
</span>
</span>
</span>
Angle B = 40.894 Degrees
sin (A) / side a = sin (B) / side b
sin (A) = 6 * sin (40.894) / 4
sin (A) = 6 * 0.65466 / 4
sin (A) = .98199
angle A = 79.109 Degrees
angle C = 60 Degrees
The answer to this question is true. Based on my knowledge and research, the deviation is, in fact, the difference between any value and the mean of the entire set.