The % error of this approximation is between 5 % and 10 %.
<h3>Procedure - Relative error of a linear approximation respect to a function</h3>
In this question we must use the function given on statement and concepts of <em>linear</em> approximation and <em>relative</em> error, which are described below:
<h3>Linear approximation</h3>
(1)
<h3>Relative error</h3>
(2)
Where:
- Original function evaluated at
.
- First derivative of the original function evaluated at
.
- Incremental change on
.
- Estimated value for
.
- Relative error, in percentage.
If we know that
,
,
and
, then the error of the linear approximation relative to the original function is:
<h3>Original function at x = 1</h3>
![f(1) = 4\cdot (1) + e^{2\cdot (1)}](https://tex.z-dn.net/?f=f%281%29%20%3D%204%5Ccdot%20%281%29%20%2B%20e%5E%7B2%5Ccdot%20%281%29%7D)
![f(1) \approx 11.389](https://tex.z-dn.net/?f=f%281%29%20%5Capprox%2011.389)
<h3>First derivative of the original function at x = 1</h3>
![f'(1) = 4 + 2\cdot e^{2\cdot (1)}](https://tex.z-dn.net/?f=f%27%281%29%20%3D%204%20%2B%202%5Ccdot%20e%5E%7B2%5Ccdot%20%281%29%7D)
![f'(1) \approx 11.389](https://tex.z-dn.net/?f=f%27%281%29%20%5Capprox%2011.389)
<h3>Original function at x = 1.1</h3>
![f(1.1) = 4\cdot (1.1) + e^{2\cdot (1.1)}](https://tex.z-dn.net/?f=f%281.1%29%20%3D%204%5Ccdot%20%281.1%29%20%2B%20e%5E%7B2%5Ccdot%20%281.1%29%7D)
![f(1.1)\approx 13.425](https://tex.z-dn.net/?f=f%281.1%29%5Capprox%2013.425)
<h3>Linear approximation at x = 1.1</h3>
![f_{e}(1.1) = 11.389 + (11.389)\cdot (0.1)](https://tex.z-dn.net/?f=f_%7Be%7D%281.1%29%20%3D%2011.389%20%2B%20%2811.389%29%5Ccdot%20%280.1%29)
![f_{e}(1.1) = 12.528](https://tex.z-dn.net/?f=f_%7Be%7D%281.1%29%20%3D%2012.528)
<h3>Relative error</h3>
![e = \frac{|12.528 - 13.425|}{13.425}\times 100\,\%](https://tex.z-dn.net/?f=e%20%3D%20%5Cfrac%7B%7C12.528%20-%2013.425%7C%7D%7B13.425%7D%5Ctimes%20100%5C%2C%5C%25)
![e \approx 6.682\,\%](https://tex.z-dn.net/?f=e%20%5Capprox%206.682%5C%2C%5C%25)
The % error of this approximation is between 5 % and 10 %. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
To learn more on relative error, we kindly invite to check this verified question: brainly.com/question/13370015