To find the hypothenuse use Pythagorean theorem: 13²+5²=h²,
h=√13²+5²=13.93cm = hypothenuse.
Answer:
Step-by-step explanation:
Take the area of the yard and subtract from it the area of the pool. In quadratic form, the area of the pool is

Subtracting the area of the pool from the area of the yard:

Since the negative in front of the parenthesis will change the signs inside:

Combine like terms to get the area left after the pool goes in:

Answer:
25 is a a rational number
15 is a rational number
1.15 is irrational number
and 1.25 is a rational number
Step-by-step explanation:
<h3>To ProvE :- </h3>
- 1 + 3 + 5 + ..... + (2n - 1) = n²
<u>Method</u><u> </u><u>:</u><u>-</u>
If P(n) is a statement such that ,
- P(n) is true for n = 1
- P(n) is true for n = k + 1 , when it's true for n = k ( k is a natural number ) , then the statement is true for all natural numbers .
Step 1 : <u>Put </u><u>n </u><u>=</u><u> </u><u>1</u><u> </u><u>:</u><u>-</u><u> </u>
Step 2 : <u>Assume </u><u>that </u><u>P(</u><u>n)</u><u> </u><u>is </u><u>true </u><u>for </u><u>n </u><u>=</u><u> </u><u>k </u><u>:</u><u>-</u>

- Add (2k +1) to both sides .
- RHS is in the form of ( a + b)² = a²+b²+2ab .
- Adding and subtracting 1 to LHS .
- P(n) is true for n = k + 1 .
Hence by the principal of Mathematical Induction we can say that P(n) is true for all natural numbers 'n' .
<em>*</em><em>*</em><em>Edits</em><em> are</em><em> welcomed</em><em>*</em><em>*</em>