You’re going to be adding by .05
so the first one would be 5.86 and the second one would be 6.01
hopefully this helps!
This problem can be solved using two equations:
The first represents the total trip, which is the miles driven in the morning added to those in the afternoon. Let's call the hours driven in the morning X and the hours driven in the afternoon Y. We get: X + Y = 248.
The second equation relates the miles driven in the morning compared to the afternoon. Since 70 fewer miles were driven in the morning than the afternoon, then X = Y - 70.
Now substitute the equation for morning hours (equation 2) into the total miles equation (equation 1). We get:
(Y - 70) + Y = 248
2Y - 70 = 248
2Y = 318
Y = 159
We know that Winston drove 159 miles in the afternoon.
To find the morning hours, just substitute 159 into the equation for morning hours (equation 2)
X = 159 - 70
X = 89
We now know that Winston drove 89 miles in the morning.
We can check our work by plugging both distances into the total distance equation: 89 + 159 = 248
Answer:
D
Step-by-step explanation:
D includes all possible outcomes.