Answer:
no worries about the other day and I had literally forgotten about the other night and was just so I could tell me how I felt and I had a flat rate that you and I had a
Step-by-step explanation:
- On the Y-axis where the 2 is you go 3 to the right and put your point right there above the 3.
- There you have your answer on the graph.
Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
3/2 = 9/x,
so 9 times 2 divided by 3 = 6
A: 6
Answer:
- As the slopes of both lines 'm' and 'n' are the same.
Therefore, we conclude that the equation x-2y=4 represents the equation of the line 'n' if lines m and n are parallel to each other.
Step-by-step explanation:
We know that the slope-intercept of line equation is

Where m is the slope and b is the y-intercept
Given the equation of the line m
y = 1/2x - 4
comparing with the slope-intercept form of the line equation
y = mx + b
Therefore,
The slope of line 'm' will be = 1/2
We know that parallel lines have the 'same slopes, thus the slope of the line 'n' must be also the same i.e. 1/2
Checking the equation of the line 'n'

solving for y to writing the equation in the slope-intercept form and determining the slope

Add -x to both sides.


Divide both sides by -2


comparing ith the slope-intercept form of the line equation
Thus, the slope of the line 'n' will be: 1/2
- As the slopes of both lines 'm' and 'n' are the same.
Therefore, we conclude that the equation x-2y=4 represents the equation of the line 'n' if lines m and n are parallel to each other.