Answer:
Step-by-step explanation:
Let's start by solving the first inequality:
3n+4 ≤ 19 ⇒ n ≤ 3
The second inequality is the following:
(10n)/(n²) > 1
So we solve also that:
(10n)/(n²)-1<0
(10n-n²)/(n²)<0
Numerator: 10n-n² > 0 ⇒ n²-10n < 0 ⇒ n(n-10) < 0 ⇒ 0<n<10
Denominator: n² > 0 ∀n - {0}
We draw the real axis and find out that the inequality is verified for:
n > 10
Now we make a system of inequalities and see when the first inequality and the second are verified:
n ≤ 3
n > 10
No n ∈ R satisfies this system of inequalities.
It's a weird result. Please check my work and tell me where I made a mistake.