The answer is 5
Because-9+4= -5
-5 +10 = 5
Answer:
a) 8.13
b) 4.10
Step-by-step explanation:
Given the rate of reaction R'(t) = 2/t+1 + 1/√t+1
In order to get the total reaction R(t) to the drugs at this times, we need to first integrate the given function to get R(t)
On integrating R'(t)
∫ (2/t+1 + 1/√t+1)dt
In integration, k∫f'(x)/f(x) dx = 1/k ln(fx)+C where k is any constant.
∫ (2/t+1 + 1/√t+1)dt
= ∫ (2/t+1)dt+ ∫ (1/√t+1)dt
= 2∫ 1/t+1 dt +∫1/+(t+1)^1/2 dt
= 2ln(t+1) + 2(t+1)^1/2 + C
= 2ln(t+1) + 2√(t+1) + C
a) For total reactions from t = 1 to t = 12
When t = 1
R(1) = 2ln2 + 2√2
≈ 4.21
When t = 12
R(12) = 2ln13 + 2√13
≈ 12.34
R(12) - R(1) ≈ 12.34-4.21
≈ 8.13
Total reactions to the drugs over the period from t = 1 to t= 12 is approx 8.13.
b) For total reactions from t = 12 to t = 24
When t = 12
R(12) = 2ln13 + 2√13
≈ 12.34
When t = 24
R(24) = 2ln25 + 2√25
≈ 16.44
R(12) - R(1) ≈ 16.44-12.34
≈ 4.10
Total reactions to the drugs over the period from t = 12 to t= 24 is approx 4.10
The trick to solving this problem is to know and remember that the sum of all the interior angles of a triangle is always 180 degrees.
Thus, (6x+1) + (5x-17) + (9x-24) = 180.
20x = -40, so x = -2 (answer)
Take into account, that in general, a cosine function of amplitude A, period T and vertical translation b, can be written as follow:
In the given case, you have:
A = 4
T = 3π/4
b = -3
By replacing you obtain:
Hence, the answer is:
f(x) = 4cos(8/3 x) - 3