Answer:
Area of circle R = 75π un² or ≈235.5 un²
Step-by-step explanation:
The problem says that m∠TRS = 120º. The total number of degrees in a circle is 360º. 120º is a third of 360º. Therefore, we can prove that the shaded sector is a third of the circle.
The problem then says that the area of the shaded sector is 25π and we have to calculate the area of the entire circle. Since we already know that the shaded sector is a third of the circle, we can simply multiply 25π by 3 in order to calculate the area of t he entire circle.
25π × 3 = 75π.
Area of circle R = 75π un² or ≈235.5 un²
Answer:
The slope》<em><u>-5</u></em>
Step-by-step explanation:
hope it helps
have a great day!!
You really can’t simply it but if u use disruptive property it would be -x - -8
Answer:
P (X ≤ 4)
Step-by-step explanation:
The binomial probability formula can be used to find the probability of a binomial experiment for a specific number of successes. It <em>does not</em> find the probability for a <em>range</em> of successes, as in this case.
The <em>range</em> "x≤4" means x = 0 <em>or</em> x = 1 <em>or </em>x = 2 <em>or</em> x = 3 <em>or</em> x = 4, so there are five different probability calculations to do.
To to find the total probability, we use the addition rule that states that the probabilities of different events can be added to find the probability for the entire set of events only if the events are <em>Mutually Exclusive</em>. The outcomes of a binomial experiment are mutually exclusive for any value of x between zero and n, as long as n and p don't change, so we're allowed to add the five calculated probabilities together to find the total probability.
The probability that x ≤ 4 can be written as P (X ≤ 4) or as P (X = 0 or X = 1 or X = 2 or X = 3 or X = 4) which means (because of the addition rule) that P(x ≤ 4) = P(x = 0) + P(x = 1) + P (x = 2) + P (x = 3) + P (x = 4)
Therefore, the probability of x<4 successes is P (X ≤ 4)
Answer:
No
Step-by-step explanation:
Solutions to systems of equations are points at which the lines of the equations intersect. Knowing this, only equations representing the same line would have infinitely many solutions because they would intersect at every one of each other's points - they're the exact same line. Therefore, if they are not the same line, they would not intersect at each and every point, and would not have infinitely many solutions.