1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga nikolaevna [1]
2 years ago
14

DULU

Mathematics
1 answer:
Blababa [14]2 years ago
8 0

Step-by-step explanation:

Find the GCD of the two lengths give

You might be interested in
QUICK!!!! BRAINLIEST GETS 40 POINTS
muminat

Answer:

i think it is c

Step-by-step explanation:

plz give brainliest.....

5 0
3 years ago
Read 2 more answers
Sherman has 3 cats and 7 dogs. He wants to buy a toy for each of his pets. Sherman has $91 to spend on pet toys. How much can he
Tamiku [17]

91 \div (3 + 7)
3 + 7 = 10
91 \div 10 = 9.1
3 0
3 years ago
3 3/8 divided by 2 1/4 =
denpristay [2]

Answer:

1.5 or 1/5

Step-by-step explanation:

Dividing two fractions is the same as multiplying the first fraction by the reciprocal of the second fraction. The first step to dividing fractions is to find the reciprocal (reverse the numerator and denominator) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators.

6 0
3 years ago
Population Growth A lake is stocked with 500 fish, and their population increases according to the logistic curve where t is mea
Alexus [3.1K]

Answer:

a) Figure attached

b) For this case we just need to see what is the value of the function when x tnd to infinity. As we can see in our original function if x goes to infinity out function tend to 1000 and thats our limiting size.

c) p'(t) =\frac{19000 e^{-\frac{t}{5}}}{5 (1+19e^{-\frac{t}{5}})^2}

And if we find the derivate when t=1 we got this:

p'(t=1) =\frac{38000 e^{-\frac{1}{5}}}{(1+19e^{-\frac{1}{5}})^2}=113.506 \approx 114

And if we replace t=10 we got:

p'(t=10) =\frac{38000 e^{-\frac{10}{5}}}{(1+19e^{-\frac{10}{5}})^2}=403.204 \approx 404

d) 0 = \frac{7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)}{(1+19e^{-\frac{t}{5}})^3}

And then:

0 = 7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)

0 =19e^{-\frac{t}{5}} -1

ln(\frac{1}{19}) = -\frac{t}{5}

t = -5 ln (\frac{1}{19}) =14.722

Step-by-step explanation:

Assuming this complete problem: "A lake is stocked with 500 fish, and the population increases according to the logistic curve p(t) = 10000 / 1 + 19e^-t/5 where t is measured in months. (a) Use a graphing utility to graph the function. (b) What is the limiting size of the fish population? (c) At what rates is the fish population changing at the end of 1 month and at the end of 10 months? (d) After how many months is the population increasing most rapidly?"

Solution to the problem

We have the following function

P(t)=\frac{10000}{1 +19e^{-\frac{t}{5}}}

(a) Use a graphing utility to graph the function.

If we use desmos we got the figure attached.

(b) What is the limiting size of the fish population?

For this case we just need to see what is the value of the function when x tnd to infinity. As we can see in our original function if x goes to infinity out function tend to 1000 and thats our limiting size.

(c) At what rates is the fish population changing at the end of 1 month and at the end of 10 months?

For this case we need to calculate the derivate of the function. And we need to use the derivate of a quotient and we got this:

p'(t) = \frac{0 - 10000 *(-\frac{19}{5}) e^{-\frac{t}{5}}}{(1+e^{-\frac{t}{5}})^2}

And if we simplify we got this:

p'(t) =\frac{19000 e^{-\frac{t}{5}}}{5 (1+19e^{-\frac{t}{5}})^2}

And if we simplify we got:

p'(t) =\frac{38000 e^{-\frac{t}{5}}}{(1+19e^{-\frac{t}{5}})^2}

And if we find the derivate when t=1 we got this:

p'(t=1) =\frac{38000 e^{-\frac{1}{5}}}{(1+19e^{-\frac{1}{5}})^2}=113.506 \approx 114

And if we replace t=10 we got:

p'(t=10) =\frac{38000 e^{-\frac{10}{5}}}{(1+19e^{-\frac{10}{5}})^2}=403.204 \approx 404

(d) After how many months is the population increasing most rapidly?

For this case we need to find the second derivate, set equal to 0 and then solve for t. The second derivate is given by:

p''(t) = \frac{7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)}{(1+19e^{-\frac{t}{5}})^3}

And if we set equal to 0 we got:

0 = \frac{7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)}{(1+19e^{-\frac{t}{5}})^3}

And then:

0 = 7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)

0 =19e^{-\frac{t}{5}} -1

ln(\frac{1}{19}) = -\frac{t}{5}

t = -5 ln (\frac{1}{19}) =14.722

7 0
3 years ago
Write the slope intercept form of an equation for the line of fit for the points (1998, 13.60) and (2003, 19.00)
Mashutka [201]
Hope this helps l!!!

4 0
3 years ago
Other questions:
  • CAN YA’LL HELP ME WITH THIS , IT GOT ME SO CONFUSED
    13·1 answer
  • It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular
    14·1 answer
  • Hey, I have some questions on some math problems for Algebra 2. Think you can help? Here's the first one :)
    9·1 answer
  • After a 25% discount, the sale price of a sweater that Amanda wants to purchase is $18. What was the original price? *
    12·1 answer
  • Estimate the annual wages for a nursing aid who earns $8.29 per hour
    11·1 answer
  • Rebecca has 6 yards of ribbon it takes 3/8 to wrap one package how many packages can see make
    11·2 answers
  • PLS HELO ME IT WILL MEAN ALOT!!<br> Ive been struggling for ages :(
    8·1 answer
  • $62.84 with a 10% sales tax<br>plz help^_^
    11·2 answers
  • Negative 12 minus negative 13
    5·2 answers
  • What is the rate of change of y=0.5•x-2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!