Answer:
Here is the complete question (attachment).
The function which represent the given points are 
Step-by-step explanation:
We know that a general exponential function is like,
We can find the answer by hit and trial method by plugging the values of
coordinates.
Here we are going to solve this with the above general formula.
So as the points are
then for 
Can be arranged in terms of the general equation.
...equation(1) and
...equation(2)

Plugging the values in equation 2.
We have
![\frac{16}{b} b^4=128,16\times b^3=128,b=\sqrt[3]{\frac{128}{16}} =\sqrt[3]{8}=2](https://tex.z-dn.net/?f=%5Cfrac%7B16%7D%7Bb%7D%20b%5E4%3D128%2C16%5Ctimes%20b%5E3%3D128%2Cb%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B128%7D%7B16%7D%7D%20%3D%5Csqrt%5B3%5D%7B8%7D%3D2)
Plugging
in equation 1.
We have 
Comparing with the general equation of exponential
and 
So the function which depicts the above points =
From theoption we have B as the correct answer.
A) The signs of the first derivative (g') tell you the graph increases as you go left from x=4 and as you go right from x=-2. Since g(4) < g(-2), one absolute extreme is (4, g(4)) = (4, 1).
The sign of the first derivative changes at x=0, at which point the slope is undefined (the curve is vertical). The curve approaches +∞ at x=0 both from the left and from the right, so the other absolute extreme is (0, +∞).
b) The second derivative (g'') changes sign at x=2, so there is a point of inflection there.
c) There is a vertical asymptote at x=0 and a flat spot at x=2. The curve goes through the points (-2, 5) and (4, 1), is increasing to the left of x=0 and non-increasing to the right of x=0. The curve is concave upward on [-2, 0) and (0, 2) and concave downward on (2, 4]. A possible graph is shown, along with the first and second derivatives.
Answer:
if the question is what is the are of the circle without the rectangle inside it, then we could solve it easily using the Mathematical formula for A Circle's area which is

since a radius is half a diameter, and the diameter is 8cm, the radius becomes 4 cm
Step-by-step explanation:
π×4^2
3.14×16
50.24
Answer:
Let x be the number of silver medals.
As there were two more gold medals than silver ones, gold medals are x+2
We also know that the number of bronze medals was 4 less than the sum of gold and silver, so if there are x + 2 of gold and x of silver, there are x+x+2-4 of bronze.
Now, we can do an equation, as we know there were a total of 28 medals:
x + x + 2 + x + x + 2 - 4 = 28
And we isolate x:
4x = 28
x = 28/4 = 7
There were 7 silver medals, so there were 9 gold ones (7-2) and 12 of bronze (9+7-4).