Answer:
m∠P = 82°
m∠Q = 49°
m∠R = 49°
Step-by-step explanation:
<em>In the isosceles triangle, the base angles are equal in measures</em>
In Δ PQR
∵ PQ = PR
∴ Δ PQR is an isosceles triangle
∵ ∠Q and ∠R are the base angles
→ By using the fact above
∴ m∠Q = m∠R
∵ m∠Q = (3x + 25)°
∵ m∠R = (2x + 33)°
→ Equate them
∴ 3x + 25 = 2x + 33
→ Subtract 2x from both sides
∵ 3x - 2x + 25 = 2x - 2x + 33
∴ x + 25 = 33
→ Subtract 25 from both sides
∵ x + 25 - 25 = 33 - 25
∴ x = 8
→ Substitute the value of x in the measures of angles Q and R
∵ m∠Q = 3(8) + 25 = 24 + 25
∴ m∠Q = 49°
∵ m∠R = 2(8) + 33 = 16 + 33
∴ m∠R = 49°
∵ The sum of the measures of the interior angles of a Δ is 180°
∴ m∠P + m∠Q + m∠R = 180°
→ Substitute the measures of angles Q and R
∵ m∠P + 49 + 49 = 180
∴ m∠P + 98 = 180
→ Subtract 98 from both sides
∵ m∠P + 98 - 98 = 180 - 98
∴ m∠P = 82°
2x + 5y = -3 ⇒ 2x + 5y = -3
1x + 8y = 4 ⇒ <u>2x + 16y = 8
</u> -<u>11y</u> = <u>-11 </u>
-11 -11
y = 1
2x + 5(1) = -3
2x + 5 = -3
<u> -5 -5</u>
<u>2x</u> = <u>-8</u>
2 2
x = -4
(x, y) = (-4, 1)
2x + 1y = 7 ⇒ 2x + 1y = 7
1x - 2y = -14 ⇒ <u>2x - 4y = -28</u>
<u>5y</u> = <u>35</u>
5 5
y = 7
2x + 7 = 7
<u> -7 -7</u>
<u>2x</u> = <u>0</u>
2 2
x = 0
(x, y) = (0, 7)
The answer is 1989 because that’s how much I know
Answer:
<h2><u>Solution</u><u> </u><u>:</u><u>-</u></h2>
We know that
V = πr²h
400 = 22/7 × r² × 8
400 × 7 = 22 × 7r²
2800 = 154r²
2800/154 = r²
18 ≈ r²
4.2 = r
Shoot two arrows worth 16 points each (32 points)