1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
2 years ago
10

Given triangle ABC = triangle DEF find AB and m PLSSSSSS HELP

Mathematics
1 answer:
Alex Ar [27]2 years ago
7 0

Answer:

6;

{50}^{o}

Step-by-step explanation:

AB=DE=6

m∠F=m∠C=

{50}^{o}

You might be interested in
PLS HELP!! 1 through 8, if you answer you don’t have to do them all just at least a few pls
GenaCL600 [577]

Answer:

1) 29

2) 64

you can use the explanation below to help find the other 6 problems

Step-by-step explanation:

1) 4(5+6) - 15 = 4 * 11 - 15 = 44 - 15 = 29

2) 8(2+4) + 16 = 8 * 6 + 16 = 48 + 16 = 64

3 0
3 years ago
Read 2 more answers
The segments shown below could form a triangle.​
Delicious77 [7]

Answer:

true, they can form a triangle.

Step-by-step explanation:

since, sum of two sides is greater than the third side in any case and the difference between two sides is smaller than the third one in all cases.

3 0
3 years ago
1.3.12
jasenka [17]

Answer:

(0.5,-1.5)

Step-by-step explanation:

this is the numbers i got when I put it in...

m=({-\frac{1+0}{2}  , \frac{-5+2}{2})

(0.5,-1.5)

7 0
3 years ago
Read 2 more answers
The cost of a service or item is a(n):<br><br> 1. Expense<br> 2. Income<br> 3. Coupon<br> 4. Budget
miv72 [106K]
<span>The cost of a service or item is an expense
</span>
5 0
3 years ago
The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as t
skad [1K]

Answer:

a) 0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

b) 0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

c) 0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

d) None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as the population mean and assume the population standard deviation of preparation fees is $100.

This means that \mu = 273, \sigma = 100

A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 30, s = \frac{100}{\sqrt{30}}

The probability is the p-value of Z when X = 273 + 16 = 289 subtracted by the p-value of Z when X = 273 - 16 = 257. So

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{30}}}

Z = 0.88

Z = 0.88 has a p-value of 0.8106

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{30}}}

Z = -0.88

Z = -0.88 has a p-value of 0.1894

0.8106 - 0.1894 = 0.6212

0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 50, s = \frac{100}{\sqrt{50}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{50}}}

Z = 1.13

Z = 1.13 has a p-value of 0.8708

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{50}}}

Z = -1.13

Z = -1.13 has a p-value of 0.1292

0.8708 - 0.1292 = 0.7416

0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 100, s = \frac{100}{\sqrt{100}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{100}}}

Z = 1.6

Z = 1.6 has a p-value of 0.9452

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{100}}}

Z = -1.6

Z = -1.6 has a p-value of 0.0648

0.9452 - 0.0648 =

0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?

None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

6 0
2 years ago
Other questions:
  • Factor out the coefficient of the variable. 4h-3
    8·1 answer
  • What goes into 75 and 25
    8·2 answers
  • A taxi cab charges a fixed amount of $2.50 in addition to $0.75 per mile. If Jasmine has $20 with her, what is the maximum numbe
    7·1 answer
  • After a hike, a group of students equally share 5 boxes of granola bars. Each box has 8 granola bars. Which algebraic expression
    13·1 answer
  • Answer ASAP!!! First correct answer gets brainliest
    6·1 answer
  • In the diagram below, which distance represents the distance from point D to
    12·1 answer
  • Determine whether the following sequence is arithmetic, geometric, or neither.
    11·1 answer
  • Find the part what is 160% of 13.7
    15·1 answer
  • How many terms are in the expression 5 - 3c + 21?<br> step by step explantion
    10·1 answer
  • Will give brainliest if correct!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!