Answer:
Second table.
Step-by-step explanation:
A function has an additive rate of change if there is a constant difference between any two consecutive input and output values.
The additive rate of change is determined using the slope formula,

From the first table we can observe a constant difference of -6 among the y-values and a constant difference of 2 among the x-values.

For the second table there is a constant difference of 3 among the y-values and a constant difference of 1 among the x-values.
The additive rate of change of this table is

Therefore the second table has an additive rate of change of 3.
The next bigger hundred is 500 .
The next smaller hundred is 400.
487 is nearer to 500 .
So if you want to add
we distribute
a(b+c)=ab+ac so
-2(m+n-4)=-2m-2n+8
5(-2m+2n)=-10m+10n
n(m+4n-5)=mn+4n^2-5n
so total we ahve
-2m-2n+8-10m+10n+mn+4n^2-5n
group like terms
4n^2+-2m-10m-2n+10n-5n+mn+8
add like temrs
4n^2-12m+3n+mn+8
To prove that <span>ΔABC ≅ ΔMQR using SAS, we show that two sides with the intersection angle are congruent.
From the diagram, it is shown that CA is congruent to RM.
From the first option, given that </span>m∠A = 64° and AB = MQ = 31 cm, then we have CA = RM, AB = MQ, and CAB = RMQ (i.e. m∠A = <span>m∠M = 64°). </span>
This shows that the first option is correct.
From the second option, given that CB = MQ = 29 cm, then we have CA = RM, <span>CB = MQ, but ACB is not congruent to RMQ.
Thus the second option in not correct.
From the third option, </span>m∠Q = 56° and CB ≅ RQ, then we have CA = RM, CB = RQ, ACB = 60<span>°, but we do not know the value of MRQ.
Thus the third option is not correct.
From the fourth option, </span>m∠R = 60° and AB ≅ MQ, then we have <span>CA = RM, AB = MQ, RMQ = </span>64<span>°, but we do not know the value of CAB.
Thus the fourth option is not correct.
From the fifth option</span>, <span>AB = QR = 31 cm, then we have </span><span>CA = RM, </span><span>AB = QR, but we do not know the value of CAB or MRQ.
Thus, the fifth option is not correct.
Therefore, the additional information that </span><span>could be used to prove ΔABC ≅ ΔMQR using SAS is </span><span>m∠A = 64° and AB = MQ = 31 cm</span>
8x19 in distributive property is (4x2)x(5x2)
the second one is in distributive property. I don't think my answer is right but its what i got.