Answer:
The distance traveled between 10 minutes and 15 minutes is increasing.
Step-by-step explanation:
Jacob is going on a road trip across the country. He covers 10 miles in 15 minutes.
Therefore, between the 10 minutes and 15 minutes, Jacob was in motion and if he covers 10 miles in 15 minutes with a constant speed, then Jacob will cover
miles in that period.
So, the distance traveled between 10 minutes and 15 minutes is increasing.
(Answer)
It’s simple subtraction the answer is 342
Parell lines are that do not intersect and perpendicular are that make a 90% angle
Answer: The margin of error = 3.71, confidence interval = (354.04, 361.46) and it means that mean cost is lies within the confidence interval.
Step-by-step explanation:
Since we have given that
Sample size = 400
Mean = $357.75
Standard deviation = $37.89
At 95% confidence level, z = 1.96
We first find the margin of error.
Margin of error is given by

95% confidence interval would be

Hence, the margin of error = 3.71, confidence interval = (354.04, 361.46) and it means that mean cost is lies within the confidence interval.
1) The solution for m² - 5m - 14 = 0 are x=7 and x=-2.
2)The solution for b² - 4b + 4 = 0 is x=2.
<u>Step-by-step explanation</u>:
The general form of quadratic equation is ax²+bx+c = 0
where
- a is the coefficient of x².
- b is the coefficient of x.
- c is the constant term.
<u>To find the roots :</u>
- Sum of the roots = b
- Product of the roots = c
1) The given quadratic equation is m² - 5m - 14 = 0.
From the above equation, it can be determined that b = -5 and c = -14
The roots are -7 and 2.
- Sum of the roots = -7+2 = -5
- Product of the roots = -7
2 = -14
The solution is given by (x-7) (x+2) = 0.
Therefore, the solutions are x=7 and x= -2.
2) The given quadratic equation is b² - 4b + 4 = 0.
From the above equation, it can be determined that b = -4 and c = 4
The roots are -2 and -2.
- Sum of the roots = -2-2 = -4
- Product of the roots = -2
-2 = 4
The solution is given by (x-2) (x-2) = 0.
Therefore, the solution is x=2.