Answer:
Yes, the bathroom has enough water and shampoo for all of them.
Step-by-step explanation:
70L+ 60S < 5600
Putting 8 into L and 7 into S, gives:
70(8) + 60(7) = 560 + 420 = 980
That is definitely less than 5600, so water is OK.
Now,
0.02L + 0.01S
Putting 8 into L and 7 into S, gives:
0.02(8) + 0.01(7) = 0.16 + 0.07 = 0.23
That's definitely less than 2.5 liters, so shampoo is OK as well.
Hence, bathroom has enough water and shampoo for them.
We know that
diameter=6 ft----------> r=6/2------> r=3 ft
h=5 1/3 ft------> (5*3+1)/3-----> 16/3 ft
[volume of a cylindrical bales]=pi*r²*h----> pi*3²*16/3---> 150.72 cm³
the answer is the option
<span>B 151 cm</span>³
Answer:
-(x+2)/(x+8)
Step-by-step explanation:
( x^2 -x-6)
------------------
24 - 5x -x^2
Factor out a minus sign from the denominator
( x^2 -x-6)
------------------
-( x^2 +5x -24)
Factor the numerators and the denominators
( x-3) (x+2)
------------------
-( x+8)(x-3)
Cancel like terms
x+2
------------------
-(x+8)
3.86
_____________________________________________________________
Step-by-step explanation:

According to this trigonometric function, −C gives you the OPPOSITE terms of what they really are, so be EXTREMELY CAREFUL:
![\displaystyle Phase\:[Horisontal]\:Shift → \frac{0}{\frac{1}{7}} = 0 \\ Period → \frac{2}{1}π = 2π](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Phase%5C%3A%5BHorisontal%5D%5C%3AShift%20%E2%86%92%20%5Cfrac%7B0%7D%7B%5Cfrac%7B1%7D%7B7%7D%7D%20%3D%200%20%5C%5C%20Period%20%E2%86%92%20%5Cfrac%7B2%7D%7B1%7D%CF%80%20%3D%202%CF%80)
Therefore we have our answer.
Extended Information on the trigonometric function
![\displaystyle Vertical\:Shift → D \\ Phase\:[Horisontal]\:Shift → \frac{C}{B} \\ Period → \frac{2}{B}π \\ Amplitude → |A|](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Vertical%5C%3AShift%20%E2%86%92%20D%20%5C%5C%20Phase%5C%3A%5BHorisontal%5D%5C%3AShift%20%E2%86%92%20%5Cfrac%7BC%7D%7BB%7D%20%5C%5C%20Period%20%E2%86%92%20%5Cfrac%7B2%7D%7BB%7D%CF%80%20%5C%5C%20Amplitude%20%E2%86%92%20%7CA%7C)
NOTE: Sometimes, your <em>vertical shift</em> might tell you to shift your graph below or above the <em>midline</em> where the amplitude is.
I am joyous to assist you anytime.