The domain is 11 and the rang is $7.75.
Domain= X- values
Range= differences between the highest & lowest value
Answer:
68%
Step-by-step explanation:
Probability of occurrence of Event v = P(v) = 28% = 0.28
Probability of occurrence of both Events v and Event w together = P(v and w) = 19% = 0.19
We have to find what is the probability that event w occurs with event v given that event v occurs on a Tuesday. This is a conditional probability. In other words we have to find what is the probability of event w given that event v occurs of Tuesday. i.e we have to find P(w|v)
The formula to calculate this conditional probability is:

Using the given values, we get:

Therefore, the probability that even w will occur with event v given that event v occurs on Tuesday is 68%
We know that
<span>The absolute value of a number is its size. For positive numbers the size is the same as the number. For negative numbers it is the corresponding positive number.
</span>
in this problem
<span>|-8|</span>=8
<span>
the answer is
8
</span>
Answer:
JK
Step-by-step explanation:
A.
In the first generation we have 2 ancestors.
In the second generation we have 4 ancestors or

ancestors.
In the third generation we have 8 ancestors ot

ancestors.
We can see that each succesive generation has two times more members. The sum is:

To calculate number of ancestors we can use formula <span>for the sum of a geometric sequence. Geometric sequence is sequence of numbers that differ by a certain factor. This factor is called ratio. Formula is:
</span>

<span>Where:
S -> sum
a1 -> first member of a sequence
r -> ratio
n -> number of elements
For this question:
a1 = 2
r = 2
n = 40
</span>

<span>
b.
1 generation = 25 years
40 generations = 40 * 25 = 1000 years
c.
Total number of people who have ever lived = </span>

Number of ancestors in 40 generations =

The number of ancestors is greater than total number of people who have ever lived. This means that not all ancestors were distinct and that in each generation both men and women had children with more than one partner.