1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
3 years ago
12

If sin0=2/3 find the values of the other five trigonometric functions of 0.

Mathematics
1 answer:
mamaluj [8]3 years ago
3 0

Answer:

See image

Step-by-step explanation:

It helps a lot to draw a triangle. Sin is OPPOSITE/ HYPOTENUSE. You can use Pythagorean thm to find the third side. Then use cos = ADJ/HYP

tan = OPP/HYP

Then, find reciprocal functions. Reciprocal just means you are flipping the ratios over.

csc = HYP/OPP

sec = HYP/ADJ

tan = ADJ/OPP

The only tricky remaining part is that you cant leave a radical (the square root symbol) on the bottom of a ratio. So you have to fix those. See image.

You might be interested in
Brian has reduced his cholesterol level by 16% after his last check up. If his original level was 200, what is his cholesterol l
Ber [7]

Answer:

32 is his cholesterol

Step-by-step explanation:

8 0
4 years ago
How do i solve this?<br>13=x/4​
Alex17521 [72]

Answer:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :  

                    13-(x/4)=0  

Step by step solution :

Step  1  :

           x

Simplify   —

           4

Equation at the end of step  1  :

       x

 13 -  —  = 0  

       4

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a fraction from a whole  

Rewrite the whole as a fraction using  4  as the denominator :  

          13     13 • 4

    13 =  ——  =  ——————

          1        4    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole  

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator  

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions  

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

13 • 4 - (x)     52 - x

————————————  =  ——————

     4             4    

Equation at the end of step  2  :

 52 - x

 ——————  = 0  

   4    

Step  3  :

When a fraction equals zero :

Now, to get rid of the denominator, Tiger multiple's both sides of the equation by the denominator. 3.1    When a fraction equals zero …

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Here's how:

 52-x

 ———— • 4 = 0 • 4

  4  

Now, on the left hand side, the  4  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  52-x  = 0  

Solving a Single Variable Equation :  

3.2      Solve  :    -x+52 = 0  

Subtract  52  from both sides of the equation :  

                     -x = -52  

Multiply both sides of the equation by (-1) :  x = 52  

7 0
3 years ago
the points on the number line represent the values of four different numbers which point best represents the value of 3
AveGali [126]

Answer:

its point b

Step-by-step explanation:

the square root of 3 rounds off to 1.7 so looking at the chart point b is closest to that

7 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
A teacher buys packs of notebooks to give to his students. The ratio of gold notebooks to red notebooks is represented in the ta
Ber [7]

Answer:

40 gold notebooks

Step-by-step explanation:

5:3 gold notebooks to red notebooks so using this we can set up a proportion

5 x

-- = ---

3 24

cross multiplying

3x = 120

x= 40

so there are 40 gold notebooks if there are 24 red notebooks

3 0
3 years ago
Read 2 more answers
Other questions:
  • Round 30.410 to hundreth
    8·1 answer
  • The value of a tractor, in dollars, x years from its models year can be predicted by the function
    10·2 answers
  • NEED ANSWER ASAP!!! THANKS!!
    11·2 answers
  • The formula a equals BH can be used to find the area of a PARALLELOGRAMwith base beat the and height H the PARALLELOGRAM shown h
    5·1 answer
  • Helpppp How do y’all do this
    9·2 answers
  • William bought a piece of wood that is
    9·2 answers
  • Can some one tell me what is 8pq+16pr+24ps and do it in step please it is factorise ​
    9·2 answers
  • Simplify the expression 3(y-5)+2y
    8·1 answer
  • Semester Exam math
    10·1 answer
  • What is the greatest common factor of 14, 28 and 42?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!