Ration expressions cause excluded values wherever the denominator equals zero.
So, for any expression like

-5 is an excluded value if 
For example, the simplest one would be

In fact, if you try to evaluate this function at -5, you'd have

which is undefined, and thus you can't evaluate the function, and thus -5 is an excluded value.
Answer:
La probabilidad de encontrar como mucho un huevo roto es 0,8857.
Step-by-step explanation:
Podemos calcular la probabilidad de econtrar un huevo roto usando la ecuación de distribución binomial:

En donde:
p: es la probablidad de encontrar huevos rotos = 10% = 0,1
x: es el número de éxitos
n: es el número de ensayos = 6 (media docena de huevos)
Ahora, como nos piden la probabilidad de enontrar como mucho un huevo roto, esto quiere decir que debemos encontar la suma de la probablidad de encontar un huevo roto con la probabilidad de encontrar ninguno roto:


Entonces, la probabilidad de encontrar como mucho un huevo roto es 0,8857.
Espero que te sea de utilidad!
Answer:
2/25
Step-by-step explanation:
Answer:
78
Step-by-step explanation:
The total you are buying is 112 pounds. The can you have picked up is 34 pounds; this leaves
112-34 = 78 pounds remaining.
X = larger number, y = smaller number
x + y = 75
x = 3y + 11
3y + 11 + y = 75
4y + 11 = 75
4y = 75 - 11
4y = 64
y = 64/4
y = 16 <=== ur smaller number
x = 3y + 11
x = 3(16) + 11
x = 48 + 11
x = 59...ur larger number