Because Electrons have a negative charge
The journey from earth to the nearest plant will take the longest
<u>Answer:</u> The ion that is expected to have a larger radius than the corresponding atom is chlorine.
<u>Explanation:</u>
There are two types of ions:
- <u>Cations:</u> They are formed when an atom looses its valence electrons. They are positive ions.
- <u>Anions:</u> They are formed when an atom gain electrons in its outermost shell. They are negative ions.
For positive ions, the removal of electron increases the nuclear charge for an outermost electron because the outermost electrons are more strongly attracted by the nucleus. So, the effective nuclear charge increases for cations and thus, the size of the cation will be smaller than that of the corresponding atom.
For negative ions, the addition of electron decreases the nuclear charge for an outermost electron because the outermost electrons are less strongly attracted by the nucleus. So, the effective nuclear charge decreases for anions and thus, the size of the anion will be larger than that of the corresponding atom.
For the given options:
<u>Option a:</u> Chlorine
Chlorine gains 1 electron and form
ion
<u>Option b:</u> Sodium
Sodium looses 1 electron and form
ion
<u>Option c:</u> Copper
Copper looses 2 electrons and form
ion
<u>Option d:</u> Strontium
Strontium looses 2 electrons and form
ion
Hence, the ion that is expected to have a larger radius than the corresponding atom is chlorine.
Answer:
5.7*10^4 is equal to 57,000.
Explanation:
First, we must multiply 10 by its power, 4. That would be 10 4 times.
10*10*10*10 = 10,000.
Then, we multiply it by 5.7.
5.7*10,000 = 57,000.
Regards!
Answer:
D
Explanation:
To answer this question, we will need to write the dissociation equation of aluminum trichloride.
AlCl3 ——-> Al3+ + 3Cl-
It can be seen that when aluminum chloride dissociates, it gives one mole of aluminum ion and three moles of the chloride ion.
From here we can see that the concentration of the aluminum chloride equals that of the aluminum ion while that of the chloride ion is thrice that of the aluminum chloride. This means we simply multiply 0.12M by 3 to get the molarity of the chloride ion while that of the aluminum ion remains the same