Answer:
22.448979591837%
Step-by-step explanation:
9514 1404 393
Answer:
y +4 = -5/14(x -7)
Step-by-step explanation:
The slope can be found using the slope formula:
m = (y2 -y1)/(x2 -x1)
m = (1 -(-4))/(-7-7) = 5/-14 = -5/14
The point-slope form is ...
y -k = m(x -h) . . . . . line with slope m through point (h, k)
Filling in the given values, we have ...
y +4 = -5/14(x -7)
to find the x-intercept of a function, we simply set y = 0 and then solve for "x", so, let's first find the equation of it and then set y = 0.
![\bf (\stackrel{x_1}{-12}~,~\stackrel{y_1}{16})~\hspace{10em} slope = m\implies-\cfrac{2}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-16=-\cfrac{2}{3}[x-(-12)] \\\\\\ y-16=-\cfrac{2}{3}(x+12)\implies \stackrel{\stackrel{y}{\downarrow }}{0}-16=-\cfrac{2}{3}x-8\implies -8=-\cfrac{2x}{3} \\\\\\ -24=-2x\implies \cfrac{-24}{-2}=x\implies 12=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (12,0) ~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-12%7D~%2C~%5Cstackrel%7By_1%7D%7B16%7D%29~%5Chspace%7B10em%7D%20slope%20%3D%20m%5Cimplies-%5Ccfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-16%3D-%5Ccfrac%7B2%7D%7B3%7D%5Bx-%28-12%29%5D%20%5C%5C%5C%5C%5C%5C%20y-16%3D-%5Ccfrac%7B2%7D%7B3%7D%28x%2B12%29%5Cimplies%20%5Cstackrel%7B%5Cstackrel%7By%7D%7B%5Cdownarrow%20%7D%7D%7B0%7D-16%3D-%5Ccfrac%7B2%7D%7B3%7Dx-8%5Cimplies%20-8%3D-%5Ccfrac%7B2x%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20-24%3D-2x%5Cimplies%20%5Ccfrac%7B-24%7D%7B-2%7D%3Dx%5Cimplies%2012%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%2812%2C0%29%20~%5Chfill)
Answer:
si es convergente
más inteligente por favor
Step-by-step explanation:
Answer:
50%
Step-by-step explanation:
Cuz 75 is 1/2 of 150, so 1/2 is equal to 50%.