Answer:
cbsdhcbsufbufbubsdubsusfsdfsdfsd
Step-by-step explanation:
How many 6-digit numbers can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, if repetitions of digits are allowed?
sveta [45]
There are 6 digits. Each digit can take ten different numbers except for the first digit since it cannot be zero.
So:
9 x 10 x 10 x 10 x 10 x 10
900000 numbers.
Another way of thinking about this is to just count up to 999,999. Obviously there are 999,999 different numbers here. But since our number has to have 6 digits in them, we have to delete 99,999 numbers. Thus there are 900,000 different numbers.
So we know that the slope-intercept form of an equation is:

And we are given the equation: 
So we need to subtract 2x from both sides:

And then divide both sides by 3:

Answer: 100 3 digit even number that begin with either 5 or 6
Explanation:
Case 1:
A 3 digit that begin with 5 should be 500-599 so there are 100 numbers
But we are only finding even number
So 100/2 = 50 3-digit even number that begin with 5.
Case 2:
A 3 digit that begin 6 should have
600-699 and there are also 100 number including even and odd in total. Since we are only finding even number we get:
100/2 = 50 3-digit even number that begin with 6.
Plus both case together we get 50 3-digit even number that begin with 5 + 50 3-digit even number that begin with 6= 50 + 50 = 100
Answer:
![m \times H=\left[\begin{array}{c c c}\boxed{-9} & \boxed{36} & \boxed{-\dfrac{9}{2}}\end{array}\right]](https://tex.z-dn.net/?f=m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cboxed%7B-9%7D%20%26%20%5Cboxed%7B36%7D%20%26%20%5Cboxed%7B-%5Cdfrac%7B9%7D%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
<u>Calculate the value of m</u>
Given:
![3\left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]=\dfrac{2}{3}m \times \left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B2%7D%7B3%7Dm%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D)
Therefore:



<u>Calculate the value of H</u>
Given:
![\left(H+ \left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]\right)+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]=\left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]+\left(\left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]\right)](https://tex.z-dn.net/?f=%5Cleft%28H%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%5Cright%29%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%5Cright%29)
Therefore:
![\implies H= \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20H%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />
<u>Calculating m × H</u>
<u />
<u />![\implies m \times H=\dfrac{9}{2} \times \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cdfrac%7B9%7D%7B2%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />![\implies m \times H=\left[\begin{array}{c c c}\dfrac{9}{2}(-2) & \dfrac{9}{2}(8) & \dfrac{9}{2}(-1)\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cdfrac%7B9%7D%7B2%7D%28-2%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%288%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%28-1%29%5Cend%7Barray%7D%5Cright%5D)
<u />