I haven’t done this in a while
That's true; the Law of Cosines works with all triangles. With right triangles it simplifies to the Pythagorean Theorem.
Answer:
- The general solution is

- The error in the approximations to y(0.2), y(0.6), and y(1):



Step-by-step explanation:
<em>Point a:</em>
The Euler's method states that:
where 
We have that
,
,
, 
- We need to find
for
, when
,
using the Euler's method.
So you need to:




- We need to find
for
, when
,
using the Euler's method.
So you need to:




The Euler's Method is detailed in the following table.
<em>Point b:</em>
To find the general solution of
you need to:
Rewrite in the form of a first order separable ODE:

Integrate each side:



We know the initial condition y(0) = 3, we are going to use it to find the value of 

So we have:

Solving for <em>y</em> we get:

<em>Point c:</em>
To compute the error in the approximations y(0.2), y(0.6), and y(1) you need to:
Find the values y(0.2), y(0.6), and y(1) using 



Next, where
are from the table.



Answer:
x = -8
Step-by-step explanation:
9+8x-4-5x=-19
5+8x-5x=-19
5+3x=-19
-5 =-19
3x = -24
3/3 = -24/3
x= -8