Answer:
Step-by-step explanation:
You can readily see from the diagram, above, that the side length of the middle cube will be between 3 and 4. You want to determine to the nearest hundredth what value between 3 and 4 represents the side length of the cube whose volume is 45 units^3.
Please note: the middle cube has been mislabeled. Instead of volume = 30 units^3, the volume should be 45 units^3.
Here's the procedure:
Guess an appropriate s value. Let's try s = side length = 3.5
Cube this: (3.5 units)^3 = 42.875. Too small. Choose a larger possible side length, such as 3.7: 3.7^3 = 50.653. Too large.
Try s = 3.6: 3.6^3 = 46.66. Too large.
Choose a smaller s, one between 3.5 and 3.6: 3.55^3 = 44.73. This is the best estimate yet for s. Continue this work just a little further. Try s = 3.57. Cube it. How close is the result to 45 cubic units?
Answer:
62
Step-by-step explanation:

The answer is x=5. This is because you need to simplify both sides and then isolate the variable.
If a secant<span> and a </span><span>tangent of a circle </span><span>are drawn from a point outside the circle, then the product of the lengths of the secant and its external segment equals the square of the length of the tangent segment.
</span><span>
y</span>² = 7(15+7)
<span>y</span>² = 7*22
<span>y</span>² = 154
<span>y = </span>√154
<span>y = 12.4 </span>← to the nearest tenth<span>
</span><span>
</span>
Answer:
x=5
Step-by-step explanation: