Answer:
-32
Step-by-step explanation:
-4 + f(8) + 3 x g(-7) = ?
To find f(8), look at each of the f(x) function and find x = 8. The y value is the answer you will plug in for f(8). The same goes for g(-7), but you will be looking at the g(x) function at x = -7.
f(8) = -4
g(-7) = -8
Make sure you solve in the correct order using PEMDAS.
-4 + (-4) + 3 x (-8) = -32
slope = (25-4)/(30-10)
slope = 21/20
slope =21/20
using point slope form
y-y1 = m(x-x1)
y-4 = 21/20 (x-10)
y = 21/20x -21/2 +4
y = 21/20 x -21/2 +8/2
y = 21/20x -13/2
let x=40
y = 21/20 (40) -13/2
y = 42-13/2
y = 35.5 games
If we round the slope to 1
slope =1
using point slope form
y-y1 = m(x-x1)
y-4 = 1 (x-10)
y = 1x -10 +4
y = x -6
let x=40
y = 40-6
y = 34 games
dividing 11.5 by 5 gives you the unit rate, then you just multiply that answer by 2 and you should be okay
Answer:
600 minutes
Step-by-step explanation:
If we write both situations as an equation, we get:
y1 = 24 + 0.15x
<em>y1 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>paid </em><em>in </em><em>first </em><em>plan</em>
<em>x </em><em>:</em><em> </em><em>total minutes </em><em>of </em><em>calls</em>
y2 = 0.19x
<em>y2 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>in </em><em>second </em><em>plan</em>
<em>x:</em><em> </em><em>total </em><em>min</em><em>utes </em><em>of </em><em>call</em>
We are now looking for the situation where the total cost in the two plans is equal, so
y1 = y2
this gives
24 + 0.15x = 0.19x
<=> 0.04x = 24
<=> x = 600
Answer:
below here hopes it helps!
Step-by-step explanation: