Answer:
1/10
13/100
4/5
12/25
3/10
63/100
3/5
51/200
2/9
5/11
To prove the last 2 recurring ones:
0.222222... = x
10x = 10 * 0.22222... = 2.222222....
Notice how the decimal part of 10x is the same as for x:
10x - x = 2.2222222... - 0.222222... = 2
10x - x = 9x = 2
x = 2/9
Same procedure for the other one but times by 100 instead:
x = 0.454545...
100x = 45.454545...
100x - x = 45.454545... - 0.454545... = 45
100x - x = 99x = 45
x = 45/99 = 5/11
The range is {-37,-25,-13,-1}. So you need to figure out what four numbers from this list of numbers (1,2,3,4,5,6,7,8), when applied to this
function, ( f(x)=-6x+11 ), equals these numbers that are in the range {-37,-25,-13,-1}.
So you apply each of these numbers (1,2,3,4,5,6,7,8) into the function (f(x)=-6x+11)
one by one.
f(1)=-6(1)+11=5
f(2)=-6(2)+11= -1
f(3)=-6(3)+11= -7
f(4)=-6(4)+11= -13
f(5)=-6(5)+11= -19
f(6)=-6(6)+11= -25
f(7)=-6(7)+11= -31
f(8)=-6(8)+11= -37
As you can see, f(2),f(4),f(6),and f(8) equal the numbers that are in the range {-37,-25,-13,-1}.
Answer:
A. The description represents an arithmetic sequence because the successive y-values have a common difference of 600
Step-by-step explanation:
The equation that this situation is describing would be

This would mean that this equation would be an arithmetic series
X/2=8/9 | *2
x=16/9≈ 1,78
2. 1 $.........1,09 Euro
x$...........157 Euro
x=157*1/1,09≈144,04 $
For x > 3, values of the function f(x) = –(x – 3)2(x + 2) are negative. On this same interval, which statement correctly describes the values of the additive and multiplicative inverses?