1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuri [45]
2 years ago
8

Pls help me

Mathematics
1 answer:
Vladimir [108]2 years ago
6 0
<h3>Learning Task 1</h3>

Correct responses;

\displaystyle 1. \hspace{0.3 cm} 7^{-1} = \frac{1}{7}

2. (14·a·b·c)⁰ = 1

\displaystyle 3. \hspace{0.3 cm} 10^{-9} = \frac{1}{10^9}

4. 5·(x·y)⁰ = 5

5. 0¹⁵ = 0

\displaystyle 6. \hspace{0.3 cm} \frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4} = 4 \cdot x^3

\displaystyle 7. \hspace{0.3 cm} \left(\frac{5 \cdot x^0}{y} \right)^{-1} = \frac{y}{5}

8. \hspace{0.3 cm}\displaystyle \frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}  = \frac{10 \cdot a^7  \cdot b^6}{c^7}

\displaystyle 9. \hspace{0.3 cm} \frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}  =  \frac{1}{y^{5} \cdot z^2}

\displaystyle 10. \hspace{0.3 cm} \left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2} = 100

11. \displaystyle \hspace{0.3 cm} \left(\frac{(a \cdot b)}{9} \right)^{-1} = \frac{9}{a \cdot b}

\displaystyle 12. \hspace{0.3 cm} \frac{9}{x^{-2}}  = 9 \cdot x^2

13. \displaystyle \hspace{0.3 cm} \frac{12 \cdot b^{-3}}{a^{-4}}  = \frac{12 \cdot a^4}{b^3}

14. \displaystyle \hspace{0.3 cm} \frac{1}{a^{-5 \cdot n}}  =a^{5 \cdot n}

15. \displaystyle \hspace{0.3 cm} \left(\frac{1}{2} \right)^{-5} = 32

<h3>Methods by which the above expressions are simplified</h3>

The given expressions expressed into non zero and non negative exponents are;

\displaystyle 1. \hspace{0.3 cm} \mathbf{7^{-1}} = \underline{\frac{1}{7}}

2. (14·a·b·c)⁰ = 14⁰ × a⁰ × b⁰ × c⁰ = 1 × 1 × 1 × 1 =<u> 1</u>

\displaystyle 3. \hspace{0.3 cm}  \mathbf{ 10^{-9}} =  \underline{ \frac{1}{10^9}}

4. 5·(x·y)⁰ = 5 × x⁰ × y⁰ = 5 × 1 × 1 = <u>5</u>

5. 0¹⁵ = <u>0</u>

\displaystyle 6. \hspace{0.3 cm}  \mathbf{\frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4}} = \frac{ 4 \times 6 \times x^5 \times x^3 \times y^4}{6 \times x^5 \times y^4} = \underline{4 \cdot x^3}

\displaystyle 7. \hspace{0.3 cm}  \mathbf{\left(\frac{5 \cdot x^0}{y} \right)^{-1} }= \frac{1}{\frac{5 \times 1}{y} } = \underline{\frac{y}{5}}

8. \hspace{0.3 cm}\displaystyle  \mathbf{\frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}}  = 10 \cdot a^{5 - (-2)} \cdot  b^{6 - 0}  \cdot c^{-5 -2} = \underline{\frac{10 \cdot a^7  \cdot b^6}{c^7}}

\displaystyle 9. \hspace{0.3 cm}  \mathbf{\frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}}  = y^{-5} \cdot z^{-2} = \underline{\frac{1}{y^{5} \cdot z^2}}

\displaystyle 10. \hspace{0.3 cm} \mathbf{\left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2}} = \left(\frac{1}{10} \right)^{-2} = \frac{1}{\left(\frac{1}{10} \right)^2 } = \frac{1}{\frac{1}{100} } = \underline{100}

11. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{(a \cdot b)}{9} \right)^{-1}} = \frac{1}{\left(\frac{(a \cdot b)}{9} \right) }  = \underline{\frac{9}{a \cdot b}}

\displaystyle 12. \hspace{0.3 cm} \mathbf{\frac{9}{x^{-2}}}  = \frac{9}{\frac{1}{x^2} }  = \underline{9 \cdot x^2}

13. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{12 \cdot b^{-3}}{a^{-4}}}  = 12 \cdot \frac{b^{-3}}{a^{-4}} =12 \cdot \frac{1}{\frac{b^3}{a^4} }  = 12 \cdot \frac{a^4}{b^3}  = \underline{\frac{12 \cdot a^4}{b^3}}

14. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{1}{a^{-5 \cdot n}}}  = \frac{1}{\frac{1}{a^{5 \cdot n}} } = \underline{a^{5 \cdot n}}

15. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{1}{2} \right)^{-5}} = \frac{1}{\left(\frac{1}{2}  \right)^5}  = 2^5 = \underline{32}

Learn more about the laws of indices here:

brainly.com/question/8959311

You might be interested in
Suppose that w and t vary inversely and that t=1/5 when w=4. write a function that models the inverse variation and find t when
Svetllana [295]
Two variables vary inversely if their product is constant (does not change). The variables w and t vary inversely so their product wt = k were k is a constant. Solving this for t we get t=k/w

We are told that w = 4 and t = 1/5 so we know their product wt = (4)(1/5) = 4/5. This is what I called k before.

Therefore the relationship between w and t can be modeled by t = (4/5) / w. That is, t = 4 / 5w

Further, when w = 9, we find t by substituting 9 for w in the equation just found and obtain: t = 4 / [(5)(9)] = 4/45. That is, when w = 9, t = 4/45.

This mean choice D is the correct answer.
3 0
3 years ago
There are 4 students on a team for relay race. How many teams can be made from 27 students.
german

There will be 7 teams made.

8 0
3 years ago
How many ink cartridges can you buy with 140 dollars if one cartridge costs 14 dollars?
jeka57 [31]
Use division: amount of money/cost of one cartridge=140/14=10
7 0
4 years ago
Read 2 more answers
Consider the system of differential equations dx/dt=−2y dy/dt=−2x. . Convert this system to a second order differential equation
Musya8 [376]

Answer:

Step-by-step explanation:

we have the following differential equations

\frac{dx}{dt}=-2y\\\frac{dy}{dt}=-2x\\

by differentiating the second equation we have

\frac{d}{dt}(\frac{dy}{dt})=-2\frac{dx}{dt}\\\frac{d^{2}y}{dt^{2}}=-2\frac{dx}{dt}\\\frac{dx}{dt}=\frac{-1}{2}\frac{d^{2}y}{dt^{2}}

and we replace dx/dt in the first equation

\frac{-1}{2}\frac{d^{2}y}{dt^{2}}=-2y\\\frac{d^{2}y}{dt^{2}}-4y=0

and by using the characteristic polynomial

m^{2}+4=0\\m=\±2i

the solution is

y(t)=Acos(2t)+Bsin(2t)

and to compute x(t) we have

\frac{dx}{dt}=-2Acos(2t)-2Bsin(2t)\\\\\int dx = \int[-2Acos(2t)-2Bsin(2t)]dt\\\\x(t)=-Asin(2t)+Bcos(2t)

and if we use x(0)=4 and y(0)=3, we can calculate the constants A and B

x(0)=B=4\\y(0)=A=3

I hope this is useful for you

regards

4 0
3 years ago
Read 2 more answers
25 POINTS FOR WHO EVER CAN HELP ME!!!
RideAnS [48]
Try A, $5000. I did 550 divided by 11, which is 50, then multiplied by 10 to find 10%, then multiplied the 10%, which was 500, by 10 to get 100% which is 5,000
4 0
3 years ago
Other questions:
  • The globe used in social studies class has a diameter of 42 centimeters, What is its volume
    5·2 answers
  • PLS HURRY!!!!!! WILL GIVE BRAINLIEST!!!! Explain the process to solve the equation. Use proper vocabulary in your explanation. 1
    5·2 answers
  • Solve for x: ln(3x)^2=16.
    8·1 answer
  • Select the correct factor from the presentation and calculate how many calories used. (Round to the hundredths.) A person weighi
    14·2 answers
  • A person has a rectangular board 12 inches by 16 inches around which she wants to put a uniform border of shells. If she has eno
    5·2 answers
  • Which function will have the steepest graph?<br> O y=-2x<br> O y=-*<br> Oy=*<br> y= {x
    14·2 answers
  • How do you solve part c
    15·1 answer
  • (And no links)
    9·1 answer
  • What pair represents equivalent ratios 2/3,9/15 5/8,15/21 3/12,6/18 4/10,12/30 ?
    11·1 answer
  • The angle of elevation from a ship to the lighthouse is 25 degrees. If the ship is 1500 meters from the lighthouse, how tall is
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!