The decimal approximation for the trigonometric function sin 28°48' is
Given the trigonometric function is sin 28°48'
The ratio between the adjacent side and the hypotenuse is called cos(θ), whereas the ratio between the opposite side and the hypotenuse is called sin(θ). The sin(θ) and cos(θ) values for a given triangle are constant regardless of the triangle's size.
To solve this, we are going to convert 28°48' into degrees first, using the conversion factor 1' = 1/60°
sin (28°48') = sin(28° ₊ (48 × 1/60)°)
= sin(28° ₊ (48 /60)°)
= sin(28° ₊ 4°/5)
= sin(28° ₊ 0.8°)
= sin(28.8°)
= 0.481753
Therefore sin (28°48') is 0.481753.
Learn more about Trigonometric functions here:
brainly.com/question/25618616
#SPJ9
The mean of the numbers is c. 67
It is c because 8x2=16 and 8x4=32 and so on
Answer:
Number of monthly calls = 475
Step-by-step explanation:
Given:
Plan 1 = $30 per month unlimited calls
Plan 2 = $11 + $0.04(per call)
Find:
Number of monthly calls, plan 1 better than plan 2
Computation:
Plan 1 (Cost) < Plan 2 (Cost)
30 < 11 + 0.04(x)
19 < 0.04(x)
475 < (x)
Number of monthly calls = 475
90x + 4
Factor out GCF
2 ( 45x + 2)