1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
3 years ago
14

Solve the equation.

align="absmiddle" class="latex-formula">
Mathematics
1 answer:
kvasek [131]3 years ago
7 0

Answer:

w= -27

Step-by-step explanation:

w/3 = -9

w = 3 * -9 = -27

You might be interested in
What is the answer to 19+x/2=4?
salantis [7]
19+x/2=4
multiply 2 on both sides
19+x=4 times 2
19+x=8
subtract 19 on each side
x=8-19
subtract
x=-11
8 0
3 years ago
The number 4.18549 multiplied by by 10 to the 12th power is
Zanzabum
You multiply 10 12 times and you will have 1000000000000
than multiply it again by 4.18549 and you will get 418549000000
3 0
3 years ago
Estimate the sum of 489 + 749
TEA [102]
The answer would be 1100 because all u have to do is 7 plus 4 and add 2 zeros at the end
5 0
3 years ago
Read 2 more answers
Lim x-> vô cùng ((căn bậc ba 3 (3x^3+3x^2+x-1)) -(căn bậc 3 (3x^3-x^2+1)))
NNADVOKAT [17]

I believe the given limit is

\displaystyle \lim_{x\to\infty} \bigg(\sqrt[3]{3x^3+3x^2+x-1} - \sqrt[3]{3x^3-x^2+1}\bigg)

Let

a = 3x^3+3x^2+x-1 \text{ and }b = 3x^3-x^2+1

Now rewrite the expression as a difference of cubes:

a^{1/3}-b^{1/3} = \dfrac{\left(a^{1/3}-b^{1/3}\right)\left(a^{2/3}+a^{1/3}b^{1/3}+b^{2/3}\right)}{\left(a^{2/3}+a^{1/3}b^{1/3}+b^{2/3}\right)} \\\\ = \dfrac{a-b}{a^{2/3}+a^{1/3}b^{1/3}+b^{2/3}}

Then

a-b = (3x^3+3x^2+x-1) - (3x^3-x^2+1) \\\\ = 4x^2+x-2

The limit is then equivalent to

\displaystyle \lim_{x\to\infty} \frac{4x^2+x-2}{a^{2/3}+(ab)^{1/3}+b^{2/3}}

From each remaining cube root expression, remove the cubic terms:

a^{2/3} = \left(3x^3+3x^2+x-1\right)^{2/3} \\\\ = \left(x^3\right)^{2/3} \left(3+\dfrac3x+\dfrac1{x^2}-\dfrac1{x^3}\right)^{2/3} \\\\ = x^2 \left(3+\dfrac3x+\dfrac1{x^2}-\dfrac1{x^3}\right)^{2/3}

(ab)^{1/3} = \left((3x^3+3x^2+x-1)(3x^3-x^2+1)\right)^{1/3} \\\\ = \left(\left(x^3\right)^{1/3}\right)^2 \left(\left(3+\dfrac3x+\dfrac1{x^2}-\dfrac1x\right)\left(3-\dfrac1x+\dfrac1{x^3}\right)\right)^{1/3} \\\\ = x^2 \left(9+\dfrac6x-\dfrac1{x^3}+\dfrac4{x^4}+\dfrac1{x^5}-\dfrac1{x^6}\right)^{1/3}

b^{2/3} = \left(3x^3-x^2+1\right)^{2/3} \\\\ = \left(x^3\right)^{2/3} \left(3-\dfrac1x+\dfrac1{x^3}\right)^{2/3} \\\\ = x^2 \left(3-\dfrac1x+\dfrac1{x^3}\right)^{2/3}

Now that we see each term in the denominator has a factor of <em>x</em> ², we can eliminate it :

\displaystyle \lim_{x\to\infty} \frac{4x^2+x-2}{a^{2/3}+(ab)^{1/3}+b^{2/3}} \\\\ = \lim_{x\to\infty} \frac{4x^2+x-2}{x^2 \left(\left(3+\dfrac3x+\dfrac1{x^2}-\dfrac1{x^3}\right)^{2/3} + \left(9+\dfrac6x-\dfrac1{x^3}+\dfrac4{x^4}+\dfrac1{x^5}-\dfrac1{x^6}\right)^{1/3} + \left(3-\dfrac1x+\dfrac1{x^3}\right)^{2/3}\right)}

=\displaystyle \lim_{x\to\infty} \frac{4+\dfrac1x-\dfrac2{x^2}}{\left(3+\dfrac3x+\dfrac1{x^2}-\dfrac1{x^3}\right)^{2/3} + \left(9+\dfrac6x-\dfrac1{x^3}+\dfrac4{x^4}+\dfrac1{x^5}-\dfrac1{x^6}\right)^{1/3} + \left(3-\dfrac1x+\dfrac1{x^3}\right)^{2/3}}

As <em>x</em> goes to infinity, each of the 1/<em>x</em> ⁿ terms converge to 0, leaving us with the overall limit,

\displaystyle \frac{4+0-0}{(3+0+0-0)^{2/3} + (9+0-0+0+0-0)^{1/3} + (3-0+0)^{2/3}} \\\\ = \frac{4}{3^{2/3}+(3^2)^{1/3}+3^{2/3}} \\\\ = \frac{4}{3\cdot 3^{2/3}} = \boxed{\frac{4}{3^{5/3}}}

8 0
3 years ago
Help me find the answer show me the steps too​
Lelechka [254]
I’m sorry I don’t know the answer to that but maybe if you go in quizlet you can find the answer.
3 0
3 years ago
Read 2 more answers
Other questions:
  • PLS HELP ! a line passes theoufh the point (0,2) and has a slope of -1/2 what is the equation od the line
    5·2 answers
  • Let g(x)=2x and h(x)=x^2+4. Find the value (hog) (1)<br> A)2<br> B)8<br> C)10<br> D)16
    8·2 answers
  • This figure is made up of two rectangular prisms.
    5·1 answer
  • 594 miles in 9 hours
    12·1 answer
  • What is the period of the sinusoidal function?
    13·2 answers
  • Find (f+g)(x) if f(x)=2/x+1 and g(x)=x-2
    14·1 answer
  • Whoever answers gets brainlist!
    13·1 answer
  • HELP!!!!!!!! Question 1 (1 point)
    5·1 answer
  • According to "Operating Your ACME W914 Camera," how can you permanently delete a picture from your camera?
    7·2 answers
  • Writing an Equa
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!