The function on the table is decreasing on the interval [-2, 0).
<h3>Over what interval is the function shown in the table decreasing?</h3>
A function is decreasing if, as x increases, f(x) decreases.
We can see that at x = -2, f(-2) = 12.
Then at x = 0, f(0) = 0.
And for the value after that:
x = 1, f(1) = 3
So now the function increases. Then we conclude that the function is decreasing on the interval [-2, 0), and after that the function increases.
If you want to learn more about decreasing functions:
brainly.com/question/1600302
#SPJ1
Answer:

Step-by-step explanation:
![\huge \sqrt[3]{9 {x}^{4} } . \sqrt[3]{3 {x}^{8} } \\ \\ \huge = \sqrt[3]{9 {x}^{4} \times 3 {x}^{8} } \\ \\\huge = \sqrt[3]{27 {x}^{12} } \\ \\ \huge\orange{= 3 {x}^{4} }](https://tex.z-dn.net/?f=%5Chuge%20%5Csqrt%5B3%5D%7B9%20%7Bx%7D%5E%7B4%7D%20%7D%20.%20%20%5Csqrt%5B3%5D%7B3%20%7Bx%7D%5E%7B8%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%5Chuge%20%3D%20%20%5Csqrt%5B3%5D%7B9%20%7Bx%7D%5E%7B4%7D%20%5Ctimes%203%20%7Bx%7D%5E%7B8%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%5Chuge%20%20%3D%20%20%5Csqrt%5B3%5D%7B27%20%7Bx%7D%5E%7B12%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Chuge%5Corange%7B%3D%203%20%7Bx%7D%5E%7B4%7D%20%7D)
The Pythagorean identity is based from the three trigonometric identities that apply to the Pythagorean theorem. The three identities are founded on the concept that the hypotenuse is equal to the sum of the squares of the two sides of the right triangle. The identities can be determined through the substitution of sine and cosine in the right triangles measurements.