The percentage of correct answers is 85% and the percentage of incorrect answers is 15% and this can be determined by using the unitary method.
Given :
- Henry takes a math test that had 20 questions.
- He answered 17 questions correctly and 3 questions incorrectly.
The following steps can be used in order to determine the percentage of correct and incorrect questions Henry answered:
Step 1 - The unitary method can be used in order to determine the percentage of correct and incorrect questions Henry answered.
Step 2 - The total number of questions in a math test is 20. The total number of correct answers is 17 and the total number of incorrect answers is 3.
Step 3 - If the 20 is the 100% questions then the percentage of 17 correct answers is:

= 85%
Step 4 - If the 20 is the 100% questions then the percentage of 3 incorrect answers is:

= 15%
For more information, refer to the link given below:
brainly.com/question/12116123
Answer:
4, I believe
Step-by-step explanation:
400 students
100 buses
400/100=4
Answer:
![\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-2%7D%7Bx%20%5Cln%20%2810%29%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>

<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Quotient Rule]:
![\displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x) - 2]'[\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5B%5Clog%20%28x%29%5D%27%20-%20%5B%5Clog%20%28x%29%20-%202%5D%27%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Rewrite [Derivative Rule - Addition/Subtraction]:
![\displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x)' - 2'][\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5B%5Clog%20%28x%29%5D%27%20-%20%5B%5Clog%20%28x%29%27%20-%202%27%5D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Logarithmic Differentiation:
![\displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - [\frac{1}{\ln (10)x} - 2'][\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%20%5B%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%202%27%5D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Derivative Rule [Basic Power Rule]:
![\displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - \frac{1}{\ln (10)x}[\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%20%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Simplify:
![\displaystyle y' = \frac{\frac{\log (x) - 2}{\ln (10)x} - \frac{\log (x)}{\ln (10)x}}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7B%5Clog%20%28x%29%20-%202%7D%7B%5Cln%20%2810%29x%7D%20-%20%5Cfrac%7B%5Clog%20%28x%29%7D%7B%5Cln%20%2810%29x%7D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Simplify:
![\displaystyle y' = \frac{\frac{-2}{\ln (10)x}}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7B-2%7D%7B%5Cln%20%2810%29x%7D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Rewrite:
![\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-2%7D%7Bx%20%5Cln%20%2810%29%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
$0.75
Step-by-step explanation:
Greg spends $0.45 on a eraser and $0.30 on a pen. How much money does Greg spend?
Well first you find the key words, (How much) which means you will be using addition in this problem. The numbers you will be adding are $0.75 and $0.30 which equals, $0.75
Answer:
no, both lines increase at different angles