1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
2 years ago
8

Pls Help - Calc. HW dy/dx problem

Mathematics
1 answer:
GREYUIT [131]2 years ago
8 0

Answer:

\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\log (x)}{\log (x) - 2}

<u>Step 2: Differentiate</u>

  1. [Function] Derivative Rule [Quotient Rule]:                                                 \displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x) - 2]'[\log (x)]}{[\log (x) - 2]^2}
  2. Rewrite [Derivative Rule - Addition/Subtraction]:                                       \displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x)' - 2'][\log (x)]}{[\log (x) - 2]^2}
  3. Logarithmic Differentiation:                                                                         \displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - [\frac{1}{\ln (10)x} - 2'][\log (x)]}{[\log (x) - 2]^2}
  4. Derivative Rule [Basic Power Rule]:                                                             \displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - \frac{1}{\ln (10)x}[\log (x)]}{[\log (x) - 2]^2}
  5. Simplify:                                                                                                         \displaystyle y' = \frac{\frac{\log (x) - 2}{\ln (10)x} - \frac{\log (x)}{\ln (10)x}}{[\log (x) - 2]^2}
  6. Simplify:                                                                                                         \displaystyle y' = \frac{\frac{-2}{\ln (10)x}}{[\log (x) - 2]^2}
  7. Rewrite:                                                                                                         \displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

You might be interested in
HELP ME PLS IM DESPO
gogolik [260]
There is a 1/3 chance. Add up the shaded parts for a total of 120 degrees. 120/360 is 1/3
7 0
3 years ago
The chapter is 8pages long. kosta read 1/4 of the chapter aloud.then christina read three pages to the class. How many pages hav
pshichka [43]
Number of pages that the chapter has = 8
Number of pages of the chapter that Kosta read = (1/4) * 8
                                                                               = 1 * 2
                                                                               = 2
The number of pages of the chapter read by Christina = 3
Then
The total number of pages of the
chapter read by both of them = 2 + 3
                                                = 5
 So the total number of pages of the chapter that has been read by Kosta and Christina is 5. I hope the procedure is clear enough for you to understand.
8 0
3 years ago
FREE POINTS!!!!!!!!!! 10 POINTS Len's recipe for blueberry muffins calls for 110.25 grams of brown sugar for the muffin batter a
RSB [31]
Wow.... My brother Said that it took him a while to figure it out... but

add 110.25 and 55.45

you would get 165.70

multiply 165.70 by 4.5

then you would get 745.65

745.65 is your answer 
7 0
3 years ago
Read 2 more answers
I’m so lost please help fast
Romashka [77]
Your screen is to blurry, can you redo the question?? I’d like to help.
3 0
3 years ago
In circle O, AP = √10, PB = x and BC = 3. Find the value of x.
Artyom0805 [142]

Answer:

The value of x is 2\ units

Step-by-step explanation:

we know that

Applying the  tangent-secant theorem

AP^{2}=PB*PC

substitute the values and solve for x

\sqrt{10}^{2}=x*(x+3)

10=x^{2}+3x

x^{2}+3x-10=0

using a graphing tool

to solve the quadratic equation

The solution is x=2\ units

see the attached figure

7 0
3 years ago
Other questions:
  • Anybody know the answer?
    5·1 answer
  • What is the length of AC ? Enter your answer in the box. units Triangle A B C with vertical side A C. Vertex B lies to the right
    13·1 answer
  • Amy is making blueberry muffins she mix 1/2 cup of water with 1 cup of Betty Crocker blueberries muffin mix. She uses 1/4 cup of
    12·1 answer
  • How wide is a poster that has a length of
    10·2 answers
  • -2x+7=13x-5 looking for x
    12·2 answers
  • What is the GCF of 16, 4089 and 689
    5·1 answer
  • How many 3/4 foot pieces of string can be cut from a 6 foot piece of string?
    5·2 answers
  • What is the answer to this problem?  7.5/12=4.2/x
    12·2 answers
  • What is the volume of this cubic object
    11·2 answers
  • Evaluate the algebraic expression for the given values of x = 3 and y = 4. Tx - 2y - 1 = I​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!