The corresponding height of the triangle is 1.6 units
The formula for calculating the area of a triangle is expressed as:
![A=\frac{1}{2} bh](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%20bh)
- b is the base of the triangle
- h is the height of the triangle
Given the coordinates of the base BC of the triangle given as B(3, 2), and C(-1,-1). Using the distance formula:
![D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\BC= \sqrt{(-1-2)^2+(-1-3)^2}\\BC=\sqrt{3^2+4^2}\\BC=\sqrt{25}\\BC=5units](https://tex.z-dn.net/?f=D%3D%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D%5C%5CBC%3D%20%5Csqrt%7B%28-1-2%29%5E2%2B%28-1-3%29%5E2%7D%5C%5CBC%3D%5Csqrt%7B3%5E2%2B4%5E2%7D%5C%5CBC%3D%5Csqrt%7B25%7D%5C%5CBC%3D5units)
The area of the triangle passing through the coordinate points A(-1, 1), B(3,2), and C(-1, -1) is expressed as:
![A=\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]\\](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%5Bx_1%28y_2-y_3%29%2Bx_2%28y_3-y_1%29%2Bx_3%28y_1-y_2%29%5D%5C%5C)
Substituting the coordinate points:
![A=\frac{1}{2}[(-1)(2-(-1))+3(-1-1)+-1(1-2)]\\A=\frac{1}{2}[(-1)(3)+3(-2)+-1(-1)]\\A=\frac{1}{2}[-3-6+1]\\A=\frac{1}{2} (-8)\\|A| =4 units^2](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%5B%28-1%29%282-%28-1%29%29%2B3%28-1-1%29%2B-1%281-2%29%5D%5C%5CA%3D%5Cfrac%7B1%7D%7B2%7D%5B%28-1%29%283%29%2B3%28-2%29%2B-1%28-1%29%5D%5C%5CA%3D%5Cfrac%7B1%7D%7B2%7D%5B-3-6%2B1%5D%5C%5CA%3D%5Cfrac%7B1%7D%7B2%7D%20%28-8%29%5C%5C%7CA%7C%20%3D4%20units%5E2)
Recall that:
![A = 0.5bh\\h=\frac{A}{0.5b}\\h=\frac{4}{0.5(5)}\\h=\frac{4}{2.5}\\h= 1.6 units](https://tex.z-dn.net/?f=A%20%3D%200.5bh%5C%5Ch%3D%5Cfrac%7BA%7D%7B0.5b%7D%5C%5Ch%3D%5Cfrac%7B4%7D%7B0.5%285%29%7D%5C%5Ch%3D%5Cfrac%7B4%7D%7B2.5%7D%5C%5Ch%3D%20%20%201.6%20units)
Hence the corresponding height of the triangle is 1.6 units
Learn more on area of triangles here: brainly.com/question/17335144