The expression would be

after the negative exponents have been removed.
A negative exponent basically tells us to "flip" the side of the fraction it's on. This means that y⁻⁶ on the numerator would go to the denominator, and that x⁻⁴ on the denominator would go to the numerator. This gives us:
Answer:
No
Step-by-step explanation:
You cannot conclude that ΔGHI is congruent to ΔKJI, because although you can see/interpret that there all the angles are congruent with one another, like with vertical angles (∠GIH and ∠KIJ) and alternate interior angles (∠H and ∠J, ∠G and ∠K), we don't know the side lengths.
All the angles could be congruent, but the sides might be different. For example, ΔGHI might be a bigger triangle than ΔKJI, which could make them similar to one another, but not congruent.
For something to be congruent to another, everything must be exactly the same.
Answer:
(2, 4)
Step-by-step explanation:
The only point that satisfies the inequality is (2, 4).
(0, 5) : -0^2 +5 = 5 . . . . . not > 5
(1, 3) : -1^2 +5 = 4 . . . . . . 3 is not > 4
(2, 4) : -2^2 +5 = 1 . . . . . . 4 is greater than 1, so this point is in the solution set.