There are a few different answers to this question, depending on what you are asking. I'll go over the main ones.
1. The Earth's axis is tilted in comparison to the Sun, so days get shorter in the winter months. This is due to less light, and therefore energy, hitting the Earth directly. Instead, that energy either misses entirely, or hits nearer to the Equator. This is why the poles have twenty-four hour days and nights depending on the season. (Night in the winter, day in the summer.)
2. In terms of the food chain, energy from the sun is converted to basic sugars by plants in a process known as photosynthesis, inside the plant's cloroplasts. Small animals such as mice and insects consume the plants, and the energy those plants converted from sunlight. This continues up the food chain until you get to apex-predators (tigers, bears, wolves, owls, etcetera).
3. In terms of electricity, solar panels are made of tons of 'solar cells' which tend to be lots of silicon atoms, which like to share electrons, and a conductive backing. (Pardon me if some of this section is incorrect, I only have a basic understanding of solar panels) When a photon (that is, a light particle) hits the silicon, it bumps off an electron, and the conductive backing catches it, resulting in a electrical current. This current is incredibly small per solar cell, so you need a ton of them to make any sort of useful power out of them. Solar panels do degrade over time, but incredibly slowly, there are some from the 1970's that still generate just as much power as they did originally (if not, only ever so slightly less).
I hope I answered what you needed to know! If you wanted a different answer, feel free to comment with some clarification and I would love to fill you in :)
<span>To a first approximation, the Earth's magnetic field resembles that of an enormous bar magnet. The field lines emerge from the southern half of the earth and re-enter in the northern half.
Several features of the Earth's field vary in a predictable way across the surface of the globe and might, in principle, be used in assessing geographic position. For example, at each location on the Earth, the field lines intersect the Earth's surface at a specific angle of inclination. On the diagram above, note that near the equator, the field lines are approximately parallel to the Earth's surface; the inclination angle in this region is said to be 0°. As one travels north from the equator, however, the field lines become progressively steeper. At the magnetic pole, the field lines are directed almost straight down into the Earth and the inclination is said to be 90°. Thus, inclination angle varies with latitude. As a consequence, an animal that has the ability to distinguish between magnetic inclination angles has a mechanism that it might be able to use to approximate its latitude. As we will discuss, hatchling loggerheads have been shown to have this ability.<span>A second geomagnetic parameter that varies across the surface of the Earth is the strength or intensity of the field. Although intensity varies somewhat less predictably than inclination, the general trend is that the field is strongest near the magnetic poles and is weakest near the equator. Hatchling loggerheads have also been shown to detect magnetic field intensity.Important Features of the Earth's field:<span><span>Inclination angle: The angle at which the magnetic field lines intersect the surface of the earth. This angle ranges from 0 degrees at the equator to 90 degrees at the poles.</span><span>Intensity: The magnetic field also varies in strength over the earth's surface. It is strongest at the poles and weakest at the equator.</span></span></span></span>
TRUE i just took the test and it was correct
<span>Hanga Roa is the capital of Eastern Island </span>