Answer: 14 female
Explanation:
21/3= 7 male
21-7=14 female
hope it helps!
Answer: A (x,y) is your original. Your answer after would be A' (-x,-y) you would change the sign. If its negative it becomes positive, and if it'd positive it becomes negative.
Answer:
50?
Step-by-step explanation:
I said 50 because there were 60 na butterflies so there was probably 50.
I am sorry if this wrong tho
Answer with Step-by-step explanation:
We are given that an equation of curve
![x^{\frac{2}{3}}+y^{\frac{2}{3}}=4](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2By%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3D4)
We have to find the equation of tangent line to the given curve at point ![(-3\sqrt3,1)](https://tex.z-dn.net/?f=%28-3%5Csqrt3%2C1%29)
By using implicit differentiation, differentiate w.r.t x
Using formula :![\frac{dx^n}{dx}=nx^{n-1}](https://tex.z-dn.net/?f=%5Cfrac%7Bdx%5En%7D%7Bdx%7D%3Dnx%5E%7Bn-1%7D)
![\frac{2}{3}y^{-\frac{1}{3}}\frac{dy}{dx}=-\frac{2}{3}x^{-\frac{1}{3}}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7Dy%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7B2%7D%7B3%7Dx%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D)
![\frac{dy}{dx}=\frac{-\frac{2}{3}x^{-\frac{1}{3}}}{\frac{2}{3}y^{-\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7B-%5Cfrac%7B2%7D%7B3%7Dx%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%7D%7B%5Cfrac%7B2%7D%7B3%7Dy%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%7D)
![\frac{dy}{dx}=-\frac{x^{-\frac{1}{3}}}{y^{-\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7Bx%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%7D%7By%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%7D)
Substitute the value x=![-3\sqrt3,y=1](https://tex.z-dn.net/?f=-3%5Csqrt3%2Cy%3D1)
Then, we get
![\frac{dy}{dx}=-\frac{(-3\sqrt3)^{-\frac{1}{3}}}{1}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7B%28-3%5Csqrt3%29%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%7D%7B1%7D)
![\frac{dy}{dx}=-(-3^{\frac{3}{2}})^{-\frac{1}{3}}=-\frac{1}{-(3)^{\frac{3}{2}\times \frac{1}{3}}}=\frac{1}{\sqrt3}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%28-3%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%3D-%5Cfrac%7B1%7D%7B-%283%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%5Ctimes%20%5Cfrac%7B1%7D%7B3%7D%7D%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt3%7D)
Slope of tangent=m=![\frac{1}{\sqrt3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Csqrt3%7D)
Equation of tangent line with slope m and passing through the point
is given by
![y-y_1=m(x-x_1)](https://tex.z-dn.net/?f=y-y_1%3Dm%28x-x_1%29)
Substitute the values then we get
The equation of tangent line is given by
![y-1=\frac{1}{\sqrt3}(x+3\sqrt3)](https://tex.z-dn.net/?f=y-1%3D%5Cfrac%7B1%7D%7B%5Csqrt3%7D%28x%2B3%5Csqrt3%29)
![y-1=\frac{x}{\sqrt3}+3](https://tex.z-dn.net/?f=y-1%3D%5Cfrac%7Bx%7D%7B%5Csqrt3%7D%2B3)
![y=\frac{x}{\sqrt3}+3+1](https://tex.z-dn.net/?f=y%3D%5Cfrac%7Bx%7D%7B%5Csqrt3%7D%2B3%2B1)
![y=\frac{x}{\sqrt3}+4](https://tex.z-dn.net/?f=y%3D%5Cfrac%7Bx%7D%7B%5Csqrt3%7D%2B4)
This is required equation of tangent line to the given curve at given point.
Answer:
![\begin{cases}y=-5x+1\\y=5x-4 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dy%3D-5x%2B1%5C%5Cy%3D5x-4%20%5Cend%7Bcases%7D)
Step-by-step explanation:
Slope-intercept form of a <u>linear equation</u>:
![\boxed{y=mx+b}](https://tex.z-dn.net/?f=%5Cboxed%7By%3Dmx%2Bb%7D)
where:
- m is the slope.
- b is the y-intercept (where the line crosses the y-axis).
<u>Slope formula</u>
![\boxed{\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctextsf%7Bslope%7D%5C%3A%28m%29%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%7D)
<u>Equation 1</u>
<u />
Define two points on the line:
<u>Substitute</u> the defined points into the slope formula:
![\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{1-6}{0-(-1)}=-5](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctextsf%7Bslope%7D%5C%3A%28m%29%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%3D%5Cdfrac%7B1-6%7D%7B0-%28-1%29%7D%3D-5)
From inspection of the graph, the line crosses the y-axis at y = 1 and so the y-intercept is 1.
Substitute the found slope and y-intercept into the slope-intercept formula to create an equation for the line:
![y=-5x+1](https://tex.z-dn.net/?f=y%3D-5x%2B1)
<u>Equation 2</u>
<u />
Define two points on the line:
<u>Substitute</u> the defined points into the slope formula:
![\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{-4-1}{0-1}=5](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctextsf%7Bslope%7D%5C%3A%28m%29%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%3D%5Cdfrac%7B-4-1%7D%7B0-1%7D%3D5)
From inspection of the graph, the line crosses the y-axis at y = -4 and so the y-intercept is -4.
Substitute the found slope and y-intercept into the slope-intercept formula to create an equation for the line:
![y=5x-4](https://tex.z-dn.net/?f=y%3D5x-4)
<u>Conclusion</u>
Therefore, the system of linear equations shown by the graph is:
![\begin{cases}y=-5x+1\\y=5x-4 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dy%3D-5x%2B1%5C%5Cy%3D5x-4%20%5Cend%7Bcases%7D)
Learn more about systems of linear equations here:
brainly.com/question/28164947
brainly.com/question/28093918