The value of
is -3. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
<h2>Procedure - Differentiability</h2><h3 /><h3>Chain rule and derivatives</h3><h3 />
We derive an expression for
by means of chain rule and differentiation rule for a product of functions:
(1)
If we know that
,
,<em> </em>
,<em> </em>
and
, then we have the following expression:
![-1-\frac{dy}{dx} = (4)\cdot (5) + (3)\cdot (2) \cdot \frac{dy}{dx}](https://tex.z-dn.net/?f=-1-%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%284%29%5Ccdot%20%285%29%20%2B%20%283%29%5Ccdot%20%282%29%20%5Ccdot%20%5Cfrac%7Bdy%7D%7Bdx%7D)
![-1-\frac{dy}{dx} = 20 + 6\cdot \frac{dy}{dx}](https://tex.z-dn.net/?f=-1-%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%2020%20%2B%206%5Ccdot%20%5Cfrac%7Bdy%7D%7Bdx%7D)
![7\cdot \frac{dy}{dx} = -21](https://tex.z-dn.net/?f=7%5Ccdot%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20-21)
![\frac{dy}{dx} = -3](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20-3)
The value of
is -3. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
To learn more on differentiability, we kindly invite to check this verified question: brainly.com/question/24062595
<h3>Remark</h3>
The statement is incomplete and full of mistakes. Complete and corrected form is presented below:
<em>The point (-2, 4) lies on the curve in the xy-plane given by the equation </em>
<em>, where </em>
<em> is a differentiable function of </em>
<em> and </em>
<em> is a differentiable function of </em>
<em>. Selected values of </em>
<em>, </em>
<em>, </em>
<em> and </em>
<em> are given below: </em>
<em>, </em>
<em>, </em>
<em>, </em>
<em>. </em>
<em />
<em>What is the value of </em>
<em> at the point </em>
<em>?</em>