The square root of a a negative integer is imaginary.
It would still be a negative under a square root if you multiplied it by 2, therefor it will still be imaginary, or I’m assuming as your book calls it, undefined.
2•(sqrt-1) = 2sqrt-1
If you add a number to -1 itself, specifically 1 or greater it will become a positive number or 0 assuming you just add 1. In that case it would be defined.
-1 + 1 = 0
-1 + 2 = 1
If you add a number to the entire thing “sqrt-1” it will not be defined.
(sqrt-1) + 1 = 1+ (sqrt-1)
If you subtract a number it will still have a negative under a square root, meaning it would be undefined.
(sqrt-1) + 1 = 1 + (sqrt-1)
however if you subtract a negative number from -1 itself, you end up getting a positive number or zero. (Subtracting a negative number is adding because the negative signs cancel out).
-1 - -1 = 0
-1 - -2 = 1
If you squared it you would get -1, which is defined
sqrt-1 • sqrt-1 = -1
and if you cubed it, you would get a negative under a square root again, therefor it would be undefined.
sqrt-1 • sqrt-1 • sqrt-1 = -1 • sqrt-1 = -1(sqrt-1)
Sorry if this answer is confusing, I don’t have a scientific keyboard, I’ll get one soon.
The best thing to do here is to divide $4.85 by 10, and then multiply it by 2.5. $4.85/10= $0.48. $0.48x2.5= $1.20
Therefore,the discount is $1.20, you've then got to subtract this from $4.85. $4.85-$1.20= $3.65
$3.65 is the sale price of the pizza.
Hope this helps :)
Answer:
The value of y would be 45.5
Step-by-step explanation:
To solve this problem, start with the base form of direct variation.
y = kx
Now we can use our original values to model the equation and find k.
35 = k(2.5)
14 = k
Now we can model the equation as:
y = 14x
Now to find y, when x = 3.25, simply put 3.25 into the equation.
y = 14(3.25)
y = 45.5
Answer:

Step-by-step explanation:
Since these are like-terms, they can be added together.
7z + 7z = 14z
60 seconds are in each minute. To find the number of seconds in 35 minutes, you multiply 60 (seconds) by 35 (minutes.) The answer is 2,100 seconds.