Answer:
:D Gud ta hear- but Grandpa John wants a blow.job
Step-by-step explanation:
From the figure shown, the interval is divided into 5 equal parts making each subinterval to be 0.2.
Part A:

The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2]+[y(0.8)\times0.2] \\ +[y(1)\times0.2] \\ \\ =[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2]+[\sqrt{1-(0.6)^2}\times0.2] \\ +[\sqrt{1-(0.8)^2}\times0.2]+[\sqrt{1-(1)^2}\times0.2] \\ \\ =(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2)+(0\times0.2) \\ \\ =0.196+0.183+0.16+0.12=0.659](https://tex.z-dn.net/?f=Area%3D%20%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%281%29%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%281%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%2B%280%5Ctimes0.2%29%20%5C%5C%20%20%5C%5C%20%3D0.196%2B0.183%2B0.16%2B0.12%3D0.659)
Part B:
The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0)\times0.2]+[y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2] \\ +[y(0.8)\times0.2] \\ \\ =[\sqrt{1-(0)^2}\times0.2]+[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2] \\ +[\sqrt{1-(0.6)^2}\times0.2] +[\sqrt{1-(0.8)^2}\times0.2] \\ \\ =(1\times0.2)+(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2) \\ \\ =0.2+0.196+0.183+0.16+0.12=0.859](https://tex.z-dn.net/?f=Area%3D%20%5By%280%29%5Ctimes0.2%5D%2B%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%281%5Ctimes0.2%29%2B%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%20%5C%5C%20%5C%5C%20%3D0.2%2B0.196%2B0.183%2B0.16%2B0.12%3D0.859)
Part C:
The approximate area of the given region is given by
1) 2m - 16 = 2m + 4
2m - 2m = 4 + 16
0 = 20 (no solution)
2) -4(r + 2) = 4(2 - 2r)
-(r + 2) = 2 - 2r
-r - 2 = 2 - 2r
-r + 2r = 2 + 2
r = 4
3) 12(5 + 2y) = 4y - (6 - 9y)
60 + 24y = 4y - 6 + 9y
60 + 24y = 13y - 6
24y - 13y = -6 - 60
11y = -66
y = -6
Answer: 9 cars.
Step-by-step explanation:
given data:
average length of a car = 16feet
speed of the driver = 100miles/hr
Solution:
First we would need to convert the Speed of the car from miles/hr to Feet/secs.
To do this we know that 1mile/hr = 1.467 feet/secs
= 100m/hr * 1.467
= 146.7Feet/secs.
So now the number of cars between him would be
= 146.7Feet/secs / 16
= 9.17
approximately there should be 9 cars between you.
Substitute the known values of p p and k k into the formula and simplify. Use the properties of the parabola<span> to analyze and </span>graph the parabola<span>. Select a few x x values, and plug them into the equation to find the corresponding </span>y y<span> values. The x x values should be selected around the vertex.</span>