from the diagram, we can see that the height or line perpendicular to the parallel sides is 8.5.
likewise we can see that the parallel sides or "bases" are 24.3 and 9.7, so
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ h=8.5\\ a=24.3\\ b=9.7 \end{cases}\implies \begin{array}{llll} A=\cfrac{8.5(24.3+9.7)}{2}\\\\ A=\cfrac{8.5(34)}{2}\implies A=144.5~in^2 \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D8.5%5C%5C%20a%3D24.3%5C%5C%20b%3D9.7%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B8.5%2824.3%2B9.7%29%7D%7B2%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B8.5%2834%29%7D%7B2%7D%5Cimplies%20A%3D144.5~in%5E2%20%5Cend%7Barray%7D)
One revolution is completed when a fixed point on the wheel travels a distance equal to the circumference of the wheel, which is 2π (13 cm) = 26π cm.
So we have
1 rev = 26π cm
1 rev = 2π rad
1 min = 60 s
(a) The angular velocity of the wheel is
(35 rev/min) * (2π rad/rev) * (1/60 min/s) = 7π/6 rad/s
or approximately 3.665 rad/s.
(b) The linear velocity is
(35 rev/min) * (26π cm/rev) * (1/60 min/s) = 91π/6 cm/s
or roughly 47.648 cm/s.
It can be deduced that the triangles are similar because the three internal angles are equal for both triangles.
<h3>How to solve the triangle?</h3>
It should be noted that the triangles are similar because the three internal angles are equal.
In this case, the ratio of the corresponding sides are equal and the corresponding angles are congruent.
The width of the river will be:
300/80 = AB/50
AB = (300 × 50)/80
AB = 187.50 feet.
Learn more about triangles on:
brainly.com/question/17335144
Answer:
Between 38.42 and 49.1.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 43.76, standard deviation of 2.67.
Between what two values will approximately 95% of the amounts be?
By the Empirical Rule, within 2 standard deviations of the mean. So
43.76 - 2*2.67 = 38.42
43.76 + 2*2.67 = 49.1
Between 38.42 and 49.1.