Answer:
1) Fail to reject the Null hypothesis
2) We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.
Step-by-step explanation:
A university administrator wants to test if there is a difference between the distance men and women travel to class from their current residence. So, the hypothesis would be:

The results of his tests are:
t-value = -1.05
p-value = 0.305
Degrees of freedom = df = 21
Based on this data we need to draw a conclusion about test. The significance level is not given, but the normally used levels of significance are 0.001, 0.005, 0.01 and 0.05
The rule of the thumb is:
- If p-value is equal to or less than the significance level, then we reject the null hypothesis
- If p-value is greater than the significance level, we fail to reject the null hypothesis.
No matter which significance level is used from the above mentioned significance levels, p-value will always be larger than it. Therefore, we fail to reject the null hypothesis.
Conclusion:
We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.
Answer:
3*5^2
Step-by-step explanation:
75 is divisible by 3
75/3 = 25
25 is not divisible by 3, but it is divisible by 5.
25 = 5^2.
25/25 = 1. We are done.
Answer:
Sample Response: First, the like terms had to be combined using the lowest common denominator (LCD). Then the subtraction property of equality was used to isolate the variable term. Finally, both sides of the equation were multiplied by the reciprocal of the coefficient to solve for a.
Step-by-step explanation:
Check the picture below, so the parabola looks more or less like that.
now, the vertex is half-way between the focus point and the directrix, so that puts it where you see it in the picture, and the horizontal parabola is opening to the left-hand-side, meaning that the distance "P" is negative.
![\textit{horizontal parabola vertex form with focus point distance} \\\\ 4p(x- h)=(y- k)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h+p,k)}\qquad \stackrel{directrix}{x=h-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\supset}\qquad \stackrel{"p"~is~positive}{op ens~\subset} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Ctextit%7Bhorizontal%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Bp%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7Bx%3Dh-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Csupset%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Csubset%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\begin{cases} h=-7\\ k=-2\\ p=-4 \end{cases}\implies 4(-4)[x-(-7)]~~ = ~~[y-(-2)]^2 \\\\\\ -16(x+7)=(y+2)^2\implies x+7=-\cfrac{(y+2)^2}{16}\implies x=-\cfrac{1}{16}(y+2)^2-7](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20h%3D-7%5C%5C%20k%3D-2%5C%5C%20p%3D-4%20%5Cend%7Bcases%7D%5Cimplies%204%28-4%29%5Bx-%28-7%29%5D~~%20%3D%20~~%5By-%28-2%29%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-16%28x%2B7%29%3D%28y%2B2%29%5E2%5Cimplies%20x%2B7%3D-%5Ccfrac%7B%28y%2B2%29%5E2%7D%7B16%7D%5Cimplies%20x%3D-%5Ccfrac%7B1%7D%7B16%7D%28y%2B2%29%5E2-7)