Answer:
118800 seconds
Explanation:
Given :
Voltage, V = 1.2 V
Resistance, R = 22 Ω
Applying Ohm's law, we get
Voltage, V = IR
Current 

I = 0.0545 A
Rate = 1800 mAh
Time taken, 
= 33 hr
= 118800 s
The wavelength of a sound wave is related to its frequency by the relationship:

where
f is the frequency
v is the speed of the wave

is the wavelength
The wave in our problem has wavelength of

and speed of

(this is the speed of sound in air), therefore its frequency is

And the period of the wave is equal to the reciprocal of its frequency:
F = (mass)(acceleration) = ma
m = 0.2 kg
Vi = 32 m/s
t = 0.5 s
Vf = 0 m/s (since it was put to stop)
a=(Vf-Vi)/t
a=(0-32)/0.5
a = 64 m/s^2 (decelerating)
F = ma = (0.2 kg)(64 m/s^2)
F = 12.8 N
<span>Hope
this answer will be a good h<span>elp for you.</span></span>
Therefore, if the block moves from its position of maximum spring stretch to maximum spring compression in 0.25 s, the time required for a full cycle is twice as much; T = 0.5 s.
Kinetic and Potential Energy HistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it <span>has very little kinetic energy.Kinetic Energy The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. Hope this helped:))))</span>