Answer:
-30 °C
Explanation:
First, we have to calculate the molality (m) of the solution. If the solution is 50% C₂H₆O₂ by mass. It means that in 100 g of solution, the are 50 g of solute (C₂H₆O₂) and 50 g of solvent (water).
The molar mass of C₂H₆O₂ is 62.07 g/mol. The moles of solute are:
50 g × (1 mol / 62.07 g) = 0.81 mol
The mass of the solvent is 50 g = 0.050 kg.
The molality is:
m = 0.81 mol / 0.050 kg = 16 m
The freezing-point depression (ΔT) can be calculated using the following expression.
ΔT = Kf × m = (1.86 °C/m) × 16 m = 30 °C
where,
Kf: freezing-point constant
The normal freezing point for water is 0°C. The freezing point of the radiator fluid is:
0°C - 30°C = -30 °C
Inclined Plane.Because an inclined plane is a flat,sloped surface. And a ramp is a perfect example of an inclined plane.
Answer:
child protective services
Explanation:
amonbgus
Answer:
Explanation:
Average acceleration
is the variation of velocity
over a specified period of time
:
Where:
being
the initial velocity and
the final velocity (according to the information given from the described graph)

Then:
The formula for the energy in a capacitor , u in terms of q and c is q²/2c
<h3>What is the energy of a capacitor?</h3>
The energy of a capacitor u = 1/2qv where
- q = charge on capacitor and
- v = voltage across capacitor.
<h3>What is the capacitance of a capacitor?</h3>
Also, the capacitance of a capacitor c = q/v where
- q = charge on capacitor and
- v = voltage across capacitor.
So, v = q/c
<h3>
The formula for energy of the capacitor in terms of q and c</h3>
Substituting v into u, we have
u = 1/2qv
= 1/2q(q/c)
= q²/2c
So, the formula for the energy in a capacitor , u in terms of q and c is q²/2c
Learn more about energy in a capacitor here:
brainly.com/question/10705986
#SPJ12