Let <span>Jacob, Carol, Geraldo, Meg, Earvin, Dora, Adam, and Sally be represented by the letters J, C, G, M, E, D, A, and S respectively. </span>
<span>In part IV we are asked:
</span><span>What is the sample space of the pairs of potential clients that could be chosen?
</span><span>
Since the Sample Space is the set of all possible outcomes, we need to make a set (a list) of all the possible pairs, which are as follows:
{(J, C), (J, G), (J, M), (J, E), (J, D), (J, A), (J, S)
, </span>(C, G), (C, M), (C, E), (C, D), (C, A), (C, S)
<span>
</span> , (G, M), (G, E), (G, D), (G, A), (G, S)
<span>
,</span>(M, E), (M, D), (M, A), (M, S)
<span>
, </span>(E, D), (E, A), (E, S) <span>
, </span>(D, A), (D, S)
, (A, S).}
We can check that the number of the elements of the sample space, n(S) is
1+2+3+4+5+6+7=28.
This gives us the answer to the first question: <span>How many pairs of potential clients can be randomly chosen from the pool of eight candidates?
(Answer: 28.)
II) </span><span>What is the probability of any particular pair being chosen?
</span>
The probability of a particular pair to be picked is 1/28, as there is only one way of choosing a particular pair, out of 28 possible pairs.
III) <span>What is the probability that the pair chosen is Jacob and Meg or Geraldo and Sally?
The probability of choosing (J, M) or (G, S) is 2 out of 28, that is 1/14.
Answers:
I) 28
II) 1/28</span>≈0.0357
III) 1/14≈0.0714
IV)
{(J, C), (J, G), (J, M), (J, E), (J, D), (J, A), (J, S)
, (C, G), (C, M), (C, E), (C, D), (C, A), (C, S)
, (G, M), (G, E), (G, D), (G, A), (G, S)
,(M, E), (M, D), (M, A), (M, S)
, (E, D), (E, A), (E, S)
, (D, A), (D, S)
, (A, S).}
Slope-intercept form y = mx + b
where m------> slope
b-------> y-intercept
m= (y1-y2)/(x1-x2)
P1(-3,5) (x1,y1)
P2(2,10) (x2,y2)
m= (5-10)/(-3-2)
m= (-5)/(-5)
m=1
Until now, the equation is y=mx+b
y=1.x+b
y=x+b
But, whe can plug the point P2(2,10) in y =x+b
10 =2 + b
10 - 2 = b
b= 8
Then, the equation is y=mx+b
y= x+8 <-------------------Solution
Verification P1(-3,5) y = x+8 5=-3+8 Ok
P2(2,10) y = x +8 10 = 2+8 Ok