In general, the volume
![V=\pi r^2h](https://tex.z-dn.net/?f=V%3D%5Cpi%20r%5E2h)
has total derivative
![\dfrac{\mathrm dV}{\mathrm dt}=\pi\left(2rh\dfrac{\mathrm dr}{\mathrm dt}+r^2\dfrac{\mathrm dh}{\mathrm dt}\right)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dV%7D%7B%5Cmathrm%20dt%7D%3D%5Cpi%5Cleft%282rh%5Cdfrac%7B%5Cmathrm%20dr%7D%7B%5Cmathrm%20dt%7D%2Br%5E2%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dt%7D%5Cright%29)
If the cylinder's height is kept constant, then
![\dfrac{\mathrm dh}{\mathrm dt}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dt%7D%3D0)
and we have
![\dfrac{\mathrm dV}{\mathrm dt}=2\pi rh\dfrac{\mathrm dt}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dV%7D%7B%5Cmathrm%20dt%7D%3D2%5Cpi%20rh%5Cdfrac%7B%5Cmathrm%20dt%7D%7B%5Cmathrm%20dt%7D)
which is to say,
![\dfrac{\mathrm dV}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dV%7D%7B%5Cmathrm%20dt%7D)
and
![\dfrac{\mathrm dr}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dr%7D%7B%5Cmathrm%20dt%7D)
are directly proportional by a factor equivalent to the lateral surface area of the cylinder (
![2\pi r h](https://tex.z-dn.net/?f=2%5Cpi%20r%20h)
).
Meanwhile, if the cylinder's radius is kept fixed, then
![\dfrac{\mathrm dV}{\mathrm dt}=\pi r^2\dfrac{\mathrm dh}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dV%7D%7B%5Cmathrm%20dt%7D%3D%5Cpi%20r%5E2%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dt%7D)
since
![\dfrac{\mathrm dr}{\mathrm dt}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dr%7D%7B%5Cmathrm%20dt%7D%3D0)
. In other words,
![\dfrac{\mathrm dV}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dV%7D%7B%5Cmathrm%20dt%7D)
and
![\dfrac{\mathrm dh}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dt%7D)
are directly proportional by a factor of the surface area of the cylinder's circular face (
![\pi r^2](https://tex.z-dn.net/?f=%5Cpi%20r%5E2)
).
Finally, the general case (
![r](https://tex.z-dn.net/?f=r)
and
![h](https://tex.z-dn.net/?f=h)
not constant), you can see from the total derivative that
![\dfrac{\mathrm dV}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dV%7D%7B%5Cmathrm%20dt%7D)
is affected by both
![\dfrac{\mathrm dh}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dt%7D)
and
![\dfrac{\mathrm dr}{\mathrm dt}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dr%7D%7B%5Cmathrm%20dt%7D)
in combination.
Answer:
The vertex is (-3,-2)
Step-by-step explanation:
We can write the equation for a parabola in the form
y = a(x-h)^2 +k where (h,k) is the vertex
y =-2 (x - 3)^2 - 2
h = -3 and k =-2
The vertex is (-3,-2)
Here is what I got:(maybe wrong) 12*8*3 = 288, which is how big the box is. Then, you remove 1.5 inches from the height and get 10.5*8*3, which is 252. Subtract 252 from 288 to get the answer, 36.
Answer:
1/4 , 1/3 , 5/6
Step-by-step explanation:
hope this helps :)
Answer:
m > 550
Step-by-step explanation:
0.80m > 55+0.70m
0.10m > 55
m > 55/0.10 = 550
A costs more when you drive more than 550 miles.