Answer
\((y + 3) (y^{2} - 3 y + 9) V)
Explanation
Explanation
Detail ste
Apply \(a^3\pm b^3=(a\pm b)(a^2\ mp ab+b^2)V : \((y + 3) (y^[2} - y \times 3 + 3^{2}) V
Multiply the monomials: \((y + 3) (y^{2} -3y + 3^{23) V
Calculate the power: \((y + 3) (y^{2} - 3 y + 9) V
Answer:
I mean rubber protects you
Answer:
2440.24 J
Explanation:
Moment of inertia, I1 = 5 kg m^2
frequency, f1 = 3 rps
ω1 = 2 x π x f1 = 2 x π x 3 = 6 π rad/s
Moment of inertia, I2 = 2 kg m^2
Let the new frequency is f2.
ω2 = 2 x π x f2
here no external torque is applied, so the angular momentum remains constant.
I1 x ω1 = I2 x ω2
5 x 6 π = 2 x 2 x π x f2
f2 = 7.5 rps
ω2 = 2 x π x 7.5 = 15 π
Initial kinetic energy, K1 = 1/2 x I1 x ω1^2 = 0.5 x 5 x (6 π)² = 887.36 J
Final kinetic energy, K2 = 1/2 x I2 x ω2^2 = 0.5 x 3 x (15 π)² = 3327.6 J
Work done, W = Change in kinetic energy = 3327.6 - 887.36 = 2440.24 J